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Cavity quantum electrodynamics is a test-bed system for quantum optics 
allowing the observation of strong interactions between photons and 
(artificial) atoms (1–3). Techniques utilizing these systems allow the 
production of non-classical states of light, which have important uses for 
quantum communication, quantum computation, and investigations of 
fundamental quantum theory. For superconducting quantum circuits, 
cavity resonators have proven a valuable resource serving several roles: 
a quantum bus to generate entanglement between qubits (4); a quantum 
non-demolition probe allowing efficient quantum measurements (5, 6); a 
generator of single microwave photons (7, 8); and a quantum memory to 
store and shuttle information (9, 10). With its large Hilbert space, a cavi-
ty resonator also has the potential to store multiple quantum bits or re-
dundantly encode information as necessary for quantum error correction. 
With the proper controls, a single cavity could be made equivalent to a 
multi-qubit register allowing for simplifications of hardware design (11, 
12). While there have been some investigations of complex, multi-
photon superpositions in superconducting cavity resonators, most tech-
niques developed so far require fast qubit frequency tunability and are 
based on con- trolling individual photons one-by-one (13, 14). These 
implementations become increasingly burdensome for complex states or 
large photon numbers, making it desirable to develop a more natural 
method for controlling the large cavity Hilbert space. 

We demonstrate a set of multi-photon operations using a fixed-
frequency superconducting transmon qubit coupled to a waveguide cavi-
ty resonator. We realize a highly ideal strong- dispersive coupling, 
where the strength of the off-resonant qubit-cavity interactions are sev-
eral orders of magnitude greater than the cavity decay rate and higher 

order non-linearities. This creates a set 
of qubit-cavity entangling operations 
allowing for control over the large cavi-
ty phase space. We implement two of 
these operations: the qubit-state condi-
tional cavity phase shift (15) and the 
photon-number conditional qubit rota-
tion (14, 16). We combine these with 
unconditional qubit and cavity opera-
tions to perform direct measurements of 
the cavity Wigner function (17) and to 
efficiently generate large superposition 
states. Using these tools, we realize a 
recently proposed protocol (18) to de-
terministically encode quantum infor-
mation in a cat state by creating an 
arbitrary superposition of quasi-
orthogonal coherent states conditioned 
on an initial qubit state. We concatenate 
these entangling operations to encode 
quantum information into multiple 
phases of the cavity state thereby creat-
ing multi-component cat states and 
producing example states proposed for 
high-precision measurements surpas-
sing the quantum-noise limit (19, 20). 
Unlike previous demonstrations of cat 
states (16, 21, 22), the procedures real-
ized here allow for the deterministic 
generation of superimposed coherent 
states with ar- bitrary phase and ampli-
tude. The set of operations demonstrat-
ed provides an efficient method to 
manipulate coherent states and could 
enable a variety of powerful methods 
for employing cavity states in quantum 

information processing. 
We realize qubit-photon quantum logic utilizing a strong off-

resonant coupling of a qubit and cavity which can be described by the 
dispersive Hamiltonian (omitting higher order non-linear terms) 

† †
q s qsH e e a a a a e e= ω + ω − χ  (1) 

where |e〉 is the excited state of the qubit, a†(a) are the raising (lowering) 
ladder operators of the cavity resonator, ωq,s are qubit and cavity transi-
tion frequencies, and χqs is the dispersive interaction between these 
modes. This interaction produces a state-dependent shift in either the 
qubit or cavity transition frequency. We exploit this conditional frequen-
cy shift to produce qubit-photon entanglement with two operations: con-
ditional cavity phase shifts and conditional qubit rotations. The 
conditional cavity phase shift can be described as 

 
 (2) 

 
where |g〉 is the ground state of the qubit and Φ is the conditional phase 
shift induced on the cavity state. This conditional phase appears from the 
free evolution of the dispersive Hamiltonian for a time τ where Φ = χqsτ. 
For example, acting a conditional cavity phase shift on a coherent state 
while the qubit is in a superposition state produces an entangled 
qubit/cavity state, ( ){ } , ,iC g e g e eΦ

Φ α ⊗ + = α + α  (disregarding 

normalization) (15). Noting that a coherent state 
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is a superposition of Fock states |n〉 represented by a complex value α, 
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In contrast to a single quantum bit, an oscillator can store multiple excitations and 
coherences provided one has the ability to generate and manipulate complex multi-
photon states. We demonstrate multi-photon control using a superconducting 
transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-
resonant coupling. This dispersive interaction is much greater than decoherence 
rates and higher-order non-linearities to allow simultaneous manipulation of 
hundreds of photons. With a toolset of conditional qubit-photon logic, we map an 
arbitrary qubit state to a superposition of coherent states, known as a ‘cat state’. 
We create cat states as large as 111 photons and extend this protocol to create 
superpositions of up to four coherent states. This control creates a powerful 
interface between discrete and continuous variable quantum computation and 
could enable applications in metrology and quantum information processing. 
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this operation enables us to encode the qubit state information into the 
cavity phase and entangle the qubit with many photons simultaneously. 
For a special case, CΦ=π, the cavity state attains a conditional π shift per 
photon. This, in turn, causes the qubit state to acquire a phase shift con-
ditional on there being exactly an odd number of photons in the cavity, 
resulting in a mapping of the cavity photon number parity to the qubit 
state. By using Ramsey interferometry, we utilize this gate to measure 
the cavity photon parity and ultimately the cavity Wigner function (17, 
23, 24). The Wigner function is a representation of a quantum state in a 
continuous variable basis and can be expressed as 

( ) †2 TrW D D Pα α α = ρ π
where 

† *a aD eα −α
α =  is the cavity displacement 

operator, 
†i a aP e π=  is the photon number parity operator, and ρ is the 

cavity state density matrix. A direct Wigner measurement is produced by 
measuring the mean photon parity 〈P〉 at many points in the cavity phase 
space which we use to completely determine the quantum state of the 
cavity. 

The second operation, the conditional qubit rotation, is a rotation on 
the qubit state con- ditional on the photon number of the cavity state. 
Because the qubit transition frequency is strongly photon number de-
pendent, we can drive a particular transition selective on a cavity Fock 
state (14, 16). A rotation on the qubit state conditioned on the mth photon 
Fock state can ideally be described as 
 

 (3) 
 
 

where ˆ,nR θ  is a qubit rotation about a vector n̂  with rotation angle θ. In 
practice, this operation will result in residual photon-dependent phase 
shifts due to the AC Stark effect, which we can correct for the purposes 
of this experiment (24). In order to realize these two entangling oper- 
ations, we must achieve dispersive shifts much greater than the qubit and 
cavity decoherence rates, max,»qs snχ γ κ  where γ is the qubit decay rate, κs 
is the storage cavity decay rate, and nmax is the maximum occupied pho-
ton number. This dispersive approximation (Eq. 1) is valid in a low pho-
ton number regime where the dispersive interaction †

qsa a e eχ  is 
much greater than higher order non-linear terms such as the cavity self-
Kerr † 2 2

sK a a  and the non-linearity of the dispersive shift 
† 2 2

qsa a e e′χ  (25). Combined with unconditional qubit/cavity manipu-
lations,these two entangling operations give us a powerful toolset for 
controlling the joint qubit/cavity system (12, 18, 24). 

Our experiment consists of two waveguide cavity resonators (16, 26) 
coupled to a transmon qubit (Fig. 1A). Cavity 1 is used for photon state 
manipulation, preparation, and storage with transition frequency 

8.18 GHz
2

sω =
π

 and decay rate 17.2 kHz
2 2 22.1 s

sκ = =
π π× µ

 (limited by 

internal losses). Cavity 2 is used for qubit state detection with transition 

frequency 9.36
2

rω =
π

 GHz and decay rate 1330 kHz
2 2 480ns

rκ = =
π π×

 

(limited by output coupling for increased readout fidelity). Both cavities 
are coupled to a ‘vertical’ transmon qubit (16, 24) with transition fre-

quency 7.46 GHz
2

qω =
π

 and decay rate 136 kHz
2 2 4.4 s
γ
= =

π π× µ
 (lim-

ited by internal losses). This system creates a dispersive interaction 
between the qubit and storage cavity mode resulting in a state-dependent 

frequency shift 2.4 MHz
2

qsχ
=

π
. We independently measure (24) higher 

order non-linear terms Ks and qs′χ  allowing us to put a limit on the max-

imum accessible photon number for this experiment: 

max min / 560, / 650, / 330« qs qs qs s qs sn n K ′= χ χ = χ = χ κ =  . 

By combining a conditional cavity phase shift with a conditional 
qubit rotation, we sequentially entangle then disentangle the qubit and 
cavity to map a qubit state to a superposition of quasi-orthogonal coher-
ent states (18). Following the sequence outlined in Fig. 1B, we start with 
an unentangled qubit/cavity state ( )0 g eψ = β ⊗ +  (disregarding 

normalization) where |β〉 is a coherent state. Performing a conditional 
cavity π phase shift on the initialized state creates an entangled qubit-
cavity state 1 0 , ,C g eπψ = ψ = β + −β . This state, where the qubit 
state is entangled with the phases of the superimposed coherent states, is 
often referred to as a ‘Schrödinger cat’ which has been studied in other 
quantum systems (15, 27). We can unconditionally displace this state to 
obtain 2 1 2 , 0,D g eβψ = ψ = β + . 

At this point, we can apply a qubit π rotation conditional on the cavi-
ty vacuum state |0〉 which produces the unentangled cat state 

( )0
ˆ3 2, 2 0yR gπψ ≈ ψ = β + ⊗ . Due to the non-orthogonality of 

coherent states, this operation will leave some remaining entanglement 
which rapidly decreases with cat state size and can be neglected com-
pared to other experimental imperfections. An additional displacement 
results in the final state ( )4 3D g−βψ = ψ = β + −β ⊗ . As an ex-

ample, we create the target cavity state ( )targψ = β + −β  where 

1
2

≈  with | | 7β = , resulting in a fidelity F = 〈ψtarg|ρ|ψtarg〉 = 0.81, 

which we confirm by direct Wigner tomography (Fig. 2A). This proce-
dure can be generalized to any arbitrary qubit state and cavity phase 
which maps as 

( ) ( ){ } ( ) ( ){ }2 2 2 20 cos sin cos sini i ig e e e e gφ φ Φθ θ θ θ⊗ + → β + β ⊗  (4) 

where θ and φ are parameters of the initial qubit state and when the su-
perimposed coherent states are sufficiently orthogonal 2| 1«| | iΦ〈β β 〉 . 
Figure 2B shows the creation of cat states con- ditioned by qubit states 
prepared at the six cardinal points of the Bloch sphere. Two special 
forms of cat states result in complete destructive interference of either 
the odd or even Fock state amplitudes. Known as the even (odd) cat 
states |β〉 ± |−β〉, these states produce superpositions of only even (odd) 
photon numbers. This interference can be showcased in the dispersive 
regime by performing qubit spectroscopy after the creation of one of 
these cavity states. Due to the strong-dispersive interaction, each spectral 
peak reveals a photon number probability of the prepared cavity state 
(28). For a coherent state |β〉, the qubit spectrum will represent a Pois-

sonian photon number distribution 
2| | 22 | |( )

!

n

n
eP n

n

− β β
β = β = . An 

even and odd cat state of equivalent amplitude follows this same enve-
lope but with destructive interference for the odd and even photon num-

ber states respectively, ( ) ( )
2| | 2| |1

!

n
i n

n
eP e

n

− β
π β

β ± −β ≈ ± . We perform 

spectroscopy on the qubit with three prepared states: |β, g〉, {|β〉 + |−β〉} 
⊗ |g〉, and {|β〉 − |−β〉} ⊗ |g〉 for |β| = 2.3, illustrating the discreteness of 
the electromagnetic signals in the cavity and revealing the non-classical 
nature of the generated cat states (Fig. 3A). 

Unlike building photon superpositions one-by-one (13, 14), this 
mapping protocol can scale to cavity states with larger quantum super-
positions by merely increasing the displacement amplitude. The size of a 
quantum superposition in a cat state S = |β1 − β2|2 is determined by its 
square distance in phase space between the two superimposed coherent 
states |β1〉, |β2〉 (21). To characterize S without performing full state to-
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mography, we measure cuts of the Wigner function along the axis per-
pendicular to its quantum interference, W (Re(α) = 0, Im(α)). The inter-
ference fringes in these cuts appear as 

( ) ( )22|Im( )|0, Im( ) cos 2 Im( )W Ae S− αα = α + δ , where A and δ are the 

fringe amplitude and phase (29). Using this method, we create and con-
firm cat states with sizes from 18 to 111 photons (Fig. 3B). The in-
creased oscillation rate of these fringes with S shows the increased 
sensitivity to small displacements in cavity field due to larger quantum 
superpositions (see (24) for proof-of-principle Heisenberg-limited phase 
estimation). Reduced fringe visibility with larger sizes is due to the in-
creased sensitivity to cavity decay. Other factors also contribute, namely 
infidelity in Wigner tomography and qubit decoherence during prepara-
tion. 

Since the methods outlined here are deterministic, entangling opera-
tions can be combined to create complex non-classical cavity states. 
Using a conditional cavity phase shift for various phases Φ, we can en-
code quantum information to a particular phase of a coherent state. Us-
ing this operation, we can create superpositions of multiple coherent 
states, multi-component cat states. We use gates C2π/3 and Cπ/2 to create 
three- and four-component cat states (Fig. 4A,B,C) with fidelity FA = 
0·60, FB = 0·58, and FC = 0·52 (24). The skewing of these states is 
caused by the inherited cavity self-Kerr. Additional factors contributing 
to infidelity include photon decay during preparation and measurement 
as well as tomography pulse errors. Note the state in Fig. 4C, also known 
as the ‘compass state’, contains overlapping interference fringes reveal-
ing increased sensitivity to cavity displacements in both quadratures 
simultaneously (19). 

We have demonstrated the efficient generation and detection of co-
herent state superpositions using off-resonant interactions inherent in the 
cavity QED architecture. The tools and techniques described here re-
quire only a fixed-frequency, strong-dispersive interaction and realize an 
interface between discrete and continuous variable quantum computation 
(30). This can lead to simplified methods for individual storage and re-
trieval of multi-qubit states in a cavity resonator and creates ways to 
perform multi-qubit stabilizer measurements (31) or to redundantly en-
code information for quantum error correction (12) using minimal hard-
ware. Additional applications include Heisenberg-limited measurement 
(19, 20, 24) and quantum information storage in thermally excited reso-
nator states (32). 
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Fig. 2. Wigner tomography of coherent state superpositions. (A) Wigner tomography of the cavity state 
( )ψ = β + −β  with | | 7β =  and 1

2
≈  using an 81 × 81 grid of tomography displacements showcases the 

interference fringes characteristic of a quantum superposition. Cuts along the real and imaginary axes reveal the relative 
population and quantum interference of the superimposed coherent states. The visibility of these interference fringes is 
reduced due to cavity decay during preparation and measurement (a perfect superposition would achieve unity mean 
photon parity). (B) Using qubit states initially prepared in the six cardinal points of the Bloch sphere, we map populations 
and phases in a resulting cat state. 

Fig. 1. Experimental device and protocol. (A) A cross-section shows the device, machined from two halves of 
aluminum alloy, which contains two cavity resonators and holds a sapphire chip with a lithographically patterned 
transmon qubit. (B) The protocol for mapping and measuring a qubit state into a superposition of coherent states is 
performed in three steps: qubit state preparation (red) using a single qubit rotation ˆ ,nR θ ; qubit to cavity state 
mapping (blue) using conditional operations Cπ and 0

ˆ,xR π  with cavity displacements Dβ; and cavity state Wigner 
tomography (green) using Ramsey interferometry with unconditional qubit  rotations 

ˆ ,
2

x
R π . 
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Fig. 4. Multi-component cat states. Using conditional cavity 
phase shifts and Cπ/2, we create superpositions of three and 
four coherent states. Shown here is Wigner tomography of 
cavity states: (A) 1 22 /3 4 /3i ii ie e e eλ λπ πβ + β + β  where 
| | 7β = , 1 0.6λ = π , and λ2 = −0.3π; (B) 

31 2 /3 2 /30 ii i i ie i e e e eµµ µ π π+ − β + β + β where | | 7β = , μ1 = 
0.5π, μ2 = −0.4π, and μ3 = −0.2π; and (C) 

1 2i ie i e iν νβ + β + −β + − β  where | | 7β = , ν1 = π, and ν2 = 
−0.2π. (D) A closer inspection of the quantum interference in 
(C) reveals increased sensitivity to cavity displacements in 
both quadratures simultaneously. 

Fig. 3. Qubit spectroscopy and scaling to large 
photon superpositions (A) Photon number splitting is 
observed when performing spectroscopy of a qubit 
dispersively coupled to the storage cavity with three 
different prepared states: a coherent state |β〉, even cat 
state |β〉 + |−β〉, and odd cat state |β〉 − |−β〉 with 
amplitude |β| = 2.3. Each spectral peak corresponds to 
the probability for a photon number state following a 
Poissonian distribution. Dashed bar plots show the 
expected photon probabilities for each of these states. 
Notice that even and odd cat states show destructive 
interference for the odd and even photon numbers. 
These spectra are acquired by deconvolving the 
measured signal with the Fourier spectrum of the finite-
width spectroscopy pulse. (B) Cuts along the imaginary 
axis of the measured Wigner function for each prepared 
cat state reveal quantum superpositions with up to 111 
photons in size. Cat state size S is determined by these 
measured interference fringes following the relation 

( )22|Im( )| cos 2 Im( )Ae S− α α + δ  where S, A and δ are fit 
parameters. 


