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MATERIALS AND METHODS

Qubit fabrication

The transmon qubit (made of a single Josephson junction
galvanically connected with two stripline antennas) is fab-
ricated on a single-crystal C-plane sapphire substrate using
Dolan bridge double-angle electron beam deposition lithog-
raphy. Film thickness for each deposition is approximately
20 nm and 60 nm. Between these depositions, an AlOx
barrier was grown via thermal oxidation for 720 seconds
in 2000 Pa static pressure of gaseous mixture 85% argon
and 15% oxygen. This resulted in a junction normal state
resistance of 4.65 kΩ. We use the term ‘vertical transmon’
(describing the orientation of the electric field with respect
to the film plane) to distinguish from the dipole geometry
of the standard ‘3D transmon’.

Measurement setup

The system is probed through input couplers connected
to each cavity resonator. These inputs have coupling qual-
ity factors, Qc ' 107 (and thus under-coupled from other
losses). The output coupler for the high frequency (read-
out) resonator is set to a coupling quality factor, Qc '
25, 000. This asymmetric coupling allows for transmission
detection of qubit-state dependent phase shifts in the read-
out resonator. Fig. S1 shows a diagram of the measure-
ment setup. Microwave generators produce signals that are
transmitted from room temperature to the sample with 20
dB attenuation at 4 K stage, 20 dB attenuation through
directional coupler and an additional 10 dB attenuation
at base (25 mK). The output signal from the readout res-
onator travels through two cryogenic isolators to a HEMT
amplifier with noise temperature of 5 K at the 4 K stage.
At room temperature, this signal is down-converted to 25
MHz where it is finally digitized using a 1GS/s ADC and
converted to an integrated digital homodyne voltage.

Hamiltonian parameters

Our system can be described by three modes which all
inherit nonlinearity from a single Josephson junction that
can be expressed by the Hamiltonian

H/~ =
∑
i

ω̃ia
†
iai − EJ(cosϕ+ 1

2ϕ
2) (S1)

where ω̃i is the linear resonance of the ith coupled mode,
EJ is the Josephson energy, and ϕ is the phase across
the Josephson junction. Each coupled mode contributes
to junction phase ϕ = 1

φ0

∑
i φi(a

†
i + ai) where φ0 is the

flux quantum and φi is the flux coefficient of the ith mode
in the basis of the coupled system. Taylor expanding to
the sixth order about small excursions in ϕ and ignoring
constant terms in the Hamiltonian produces

H/~ =
∑
i

ω̃ia
†
iai − EJ [ 1

24ϕ
4 − 1

720ϕ
6 +O(ϕ8)]. (S2)

Following the analysis in (33) gives the approximate Hamil-
tonian:

H/~ ≈
∑
i

ωia
†
iai

−
∑
i

Kia
†2
i a

2
i −

∑
i6=j

χija
†
iaia

†
jaj (S3)

+
∑
i

K ′ia
†3
i a

3
i +

∑
i6=j

χ′ija
†
iaia

†2
j a

2
j

+χijka†iaia
†
jaja

†
kak

where ωi are the non-linear single photon resonances of each
mode, Ki is the anharmonic term of each mode (also known
as the self-Kerr), χij is the state dependent shift between
modes i and j, K ′i is a non-linear correction to Ki, χ′ij is
a non-linear correction to the state dependent shift, and
χijk is a three-mode state dependent shift. K ′i and χ′ij can
be viewed as terms that create photon-number dependence
in the Ki and χij terms. Measured and estimated values
in this experiment can be found in Table SI. The relevant
terms for this experiment when restricting the ‘qubit’ mode
to |g〉 〈g| and |e〉 〈e| states and restricting to terms with
interaction strengths greater than transition linewidths give
the reduced Hamiltonian

H/~ ≈ ωq |e〉 〈e|+ ωsa
†a+ ωrb

†b

− χqsa†a |e〉 〈e| − χqrb†b |e〉 〈e| (S4)
−Ksa

†2a2 + χ′qsa
†2a2 |e〉 〈e|

where ωq,s,r are the transition frequencies of the qubit,
storage, and readout modes; χqs and χqr are the state de-
pendent shifts between the qubit and the storage/readout
modes; Ks is the storage mode self-Kerr; and χ′qs is the non-
linear correction to the state dependent shift. Methods for
measuring Ks, and χ′qs are described in future sections. It
is interesting to note is that our measured value for the ra-
tio of χ′qs/Ks is greater than one, a feature that cannot be
predicted using this Hamiltonian approximation.
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Experiment initialization

The experiments shown here rely on the assumption that
the qubit/cavity system is initialized in the ground state
|0, g〉. If there exists some probability of initial residual
excitation Pe, techniques such as post-selection can be per-
formed to remove these systematic preparation errors. In
this experiment, we can realize a similar operation by ap-
plying a conditional cavity displacement tone De

β on an
initial mixed state ρ = |0〉 〈0| ⊗ {Pg |g〉 〈g| + Pe |e〉 〈e|}
to produce De

βρD
e†
β = Pg |0, g〉 〈0, g| + Pe |β, e〉 〈β, e|. For

this experiment, we use a weak tone with a drive strength
ε/2π = 990 kHz and duration 2.5 µs to initialize each ex-
periment which produces an estimated displaced state |β, e〉
where |β| ≈ 17 for any residual qubit excitation. This op-
eration ideally entangles any initial qubit excitation with
photons outside of our measurable Hilbert space (for this
experiment, our tomography displacements do not exceed
|α| = 6). This technique runs at a cost of reduced SNR and
some residual cavity state excitation. We measure popula-
tion of the qubit state Pe before and after initialization to
be 0.12 and ≤0.01 respectively and population of the cavity
one photon Fock state P1 before and after initialization to
be 0.003 and 0.02, respectively.

Multi-component cat state generation sequences

As described in the main text, by concatenating the con-
ditional cavity phase shift CΦ and the conditional qubit
rotation R0

ŷ,θ we can create complex cavity states that en-
code quantum information into a superposition of multiple
coherent states. Fig. S2 outlines the sequence of operations
required in order to produce the cavity states shown in
Fig. 4 of the main text. The phase of the conditional qubit
rotations R0

n̂,θ will determine the phase of the interference
fringes between each coherent state. In this experiment,
we left these phases uncalibrated resulting in states with
defined yet arbitrarily chosen superposition phases.

SUPPLEMENTARY TEXT

Heisenberg-limited phase estimation using the qcMAP

The protocol (18) which we outline in the main text (also
known as the qcMAP) allows for the deterministic creation
of cat states. A cat state’s increased sensitivity to cavity
displacements could be utilized for high precision metrology
experiments (19, 20, 34). Linear schemes using a coherent
state |β〉 will have a phase resolution δΦ that scales as 1√

n̄

where n̄ = |β|2 is the average energy (in photons) of the
coherent state. This scaling is known as the quantum-noise
limit. Using entanglement (or in this case, a superposition
of photons) allows one to surpass this limit and achieve a
scaling of 1

n̄ , known as the Heisenberg limit (20).
Shown in Fig. S3 is a proof-of-principle experiment where

we use the qcMAP protocol to realize Heisenberg-limited

phase resolution. We compare the scaling of a cat state’s
sensitivity to phase with a coherent state’s sensitivity with
equivalent mean energy. To do so, we prepare a qubit state
in either |g〉 or |g〉+|e〉 and map to a cavity state to produce
either the states |β〉 or |0〉+ |

√
2β〉. Notice that both states

have a mean energy n̄ = |β|2. We implement a cavity phase
shift Φ (by changing our cavity drive reference frame) be-
fore mapping the cavity state back to the qubit state. We
will define the phase resolution δΦ = 1/dPe

dΦ of these states
as the inverse of the maximum slope of the detected qubit
population Pe with respect to the phase shift Φ. For a co-
herent state, this gives a phase resolution δΦD =

√
e/n̄. A

cat state of equivalent mean energy gives a phase resolu-
tion (for small angles of Φ) δΦC = 1/n̄. In reality, the cat
state’s sensitivity to phase δΦC is an approximation at low
energies for n̄κτ � 1 where κ is the cavity decay rate and
τ is a combination of the time for preparation and detec-
tion. For larger energies, the cat state’s phase resolution
will diverge as δΦC = en̄κτ/n̄.

We measure a phase resolution for cat states of mean
energy n̄ = 9, 15.5, and 22.5 photons and compare them
to coherent states with mean energies up to 30 photons
(Fig. S3) and show phase resolution scaling indicative of
the Heisenberg limit.

Qubit state revival using Ramsey interferometry

We utilize the dispersive shift χqs in order to create a
qubit state-dependent phase shift of the cavity state CΦ
where Φ = χqst. Using Ramsey interferometry, we can
characterize this operation by observing the precession of
the qubit state phase when interacting with a coherent state
|β〉. Performing a Ramsey experiment for various times t
and an initial state |ψ(0)〉 = |β, g〉 results in

|ψ(t)〉 = Rŷ,π2 CΦ=χqstRŷ,π2 |β, g〉

= e
π
4 (|e〉〈g|−|g〉〈e|)e−iχqsta

†a|e〉〈e|e
π
4 (|e〉〈g|−|g〉〈e|) |β, g〉

= 1
2{(|β〉 − |βe

−iχqst〉)⊗ |g〉+ (|β〉+ |βe−iχqst〉)⊗ |e〉}

where Rŷ,π2 is a π/2 rotation about the y-axis of the qubit
Bloch sphere. This results in a qubit excited state proba-
bility Pe as

Pe = 1
2{1 + Re(〈β|βeiχqst〉)}

= 1
2{1 + e|β|

2(cos(χqst)−1) cos(|β|2 sin(χqst))}. (S5)

While this relation appears to yield an apparent decay in
coherence proportional to e− 1

2 (|β|χqst)2 , in actuality this is
a coherent precession of the qubit phase dependent on the
cavity state. From this, we should also expect to see a
revival in the qubit state coherence at a time trevival =
2π/χqs. Shown in Fig. S4 is this Ramsey experiment for
displacements Dβ with |β| = 0 to 2.5 and wait times t =
0 to 1 µs. This time-dependent method shows a revival
time of 422 ns confirming spectroscopy measurements of
the state-dependent shift χqs = 2.36 MHz. The overall
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reduction in revival visibility is due to internal qubit de-
phasing. Cavity photon decay will also begin to dominate
at larger displacements. A shift in the revival time occurs
due to higher order interactions in the dispersive Hamilto-
nian (see later section). This experiment also reveals our
precision for a selected cavity phase, ∆Φ = χqs∆t = 0.015
radians.

Measuring each step of the qcMAP protocol

The Q-function of a cavity state is Q(α) = 1
π 〈α|ρ|α〉

where ρ is the cavity state density matrix and can be
a useful tool for detecting the population and phase of
a cavity state. With qubit rotations conditioned on the
zero-photon Fock state, the Q-function can be measured
through qubit/cavity entanglement (16). The operation
relies on the assumption that the qubit is in the ground
state |g〉. If the qubit state is unknown, we can perform
tomography of the Q-function conditional on the qubit
state using various conditional qubit operations. With
rotations R0

ŷ,π and R0
ŷ,π2

, we can measure conditional Q-
functions Q(α)|g〉, Q(α)|e〉, and Q(α)|g〉+|e〉 which we use
here to illustrate qubit/cavity correlations. Fig. S5 shows
each step in the qcMAP protocol beginning with the state,
|ψ〉 = 1√

2{|0〉 ⊗ (|g〉 + |e〉)} and mapping to the state,
|ψ〉 = N{(|β〉+ |−β〉)⊗ |g〉} where |β| =

√
7 and N ≈ 1√

2 .

Cavity state Analysis

Direct Wigner tomography, while being an efficient
method for determining the entire cavity state, can also
be used for local measurements of the cavity phase space.
This could allow for just a small number of measurements
to estimate a particular cavity state observable, bypassing
the need for full cavity state reconstruction (35). Using
the high-resolution Wigner measurements of Fig. 2 in the
main text, we compare our ability to calculate observables
from both a cavity state reconstruction using linear regres-
sion and direct methods using the Wigner function as a
quasi-probability distribution.

Cavity state reconstruction

The Wigner function is related to the cavity density ma-
trix by the combination of displacement operators Dα and
photon number parity P as

W (α) = 2
π

Tr[D†αρDαP ] (S6)

where ρ is the cavity state density matrix. This can be
rearranged into a linear equation by

W (α) = 2
π

Tr[DαPD
†
αρ]

= Tr[M(α)ρ]

=
∑
i,j

Mji(α)ρij

where M(α) = DαPD
†
α such that Mji(α) and ρij are ele-

ments in matrices M(α) and ρ. This linear relation can be
inverted using least squares regression to determine each
element of ρij from W (α). This regression is performed
under the constraint that ρ is normalized (Tr[ρ] = 1), posi-
tive semi-definite, and truncated at 20 photons. See Fig. S6
for a comparison between the measured and reconstructed
Wigner function of the cat state reported in Fig. 2 of the
main text.

Calculating observables from cavity state Wigner function

Knowledge of the cavity state density matrix ρ allows
for the calculation of the cavity state observable O(a†, a)
by the relation

〈O(a†, a)〉 = Tr[O(a†, a)ρ]. (S7)

This relationship also allows us to calculate the fidelity of
the cavity state to a particular pure target state |ψtarg〉 by

F = 〈ψt|ρ|ψt〉 = Tr[|ψtarg〉 〈ψtarg| ρ].

The Wigner function W (α∗, α) (which we now denote as
a function of a complex value α and its complex conju-
gate α∗) holds an equivalent method for calculating mean
observables〈

O(a†, a)
〉

= 1
π

∫
o(α∗, α)W (α∗, α)d2α (S8)

where the o(α∗, α) is the complex function corresponding to
the operator, O(a†, a). This function has the relation (36,
37) with any symmetrically ordered O(a†, a) as

{O(a†m, an)}s → o(α∗, α) = α∗mαn

where m,n are integers and {..}s denotes symmetric order-
ing of a† and a. Using this relationship and commutation
relations, the expectation value of any observable can be in-
ferred. Fidelity of a pure target state can also be calculated
in this way following

F = 〈ψt|ρ|ψt〉 = 1
π

∫
Wtarg(α∗, α)W (α∗, α)d2α

where Wtarg(α∗, α) is the target state Wigner function. No
least-squares fitting and density matrix reconstruction is
necessary to retrieve these mean observables though some
error will occur due to discrete integration. Table SII shows
the inferred expectation values of photon number a†a, po-
sition 1

2 (a† + a), momentum 1
2i (a

† − a), and fidelity to a
target state |ψtarg〉 of the measured cat state in Fig. 2 of
the main text using these two different methods.
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Qubit/cavity state mapping and mapping back

Since qubit to cavity state mapping is deterministic, we
can reverse the process in order to map an encoded cavity
state back to the qubit. We explore this feature by per-
forming a ‘map/map-back’ experiment to diagnose sources
of error in the mapping operation. This will also allow us to
isolate errors between cavity state preparation and Wigner
tomography.

We perform quantum process tomography on the
map/map-back operation acting on the qubit. The pro-
cess matrix (see Fig. S7) for each cat state size reveals that
a dominant error in this ideally identity operation is qubit
phase coherence. These errors are those most sensitive to
photon loss of the cavity state during the mapping process
and can be observed in the increased phase errors in the
process matrix for map/map-back of cat states with large
photon numbers.

Using a Ramsey experiment on the qubit, we can also
observe the recovered quantum coherence for mapping a
cat state to the cavity then back to the qubit. We perform
this experiment for cat states of estimated size: 16, 28,
40, and 100 photons. The reduction in Ramsey contrast
with larger cat state sizes is indicative of decoherence due
to photon decay during the map/map-back process. This
suggests that cat state preparation fidelity could actually
be above 0.9 for sizes up 40 photons and above 0.75 for a
state of size 100 photons where fidelity F is estimated from
contrast C as F ≈ (1 +

√
C)/2. Note that further loss of

fidelity not included in this approximation can occur due
to effects such as the cavity self-Kerr.

Detecting the cavity state and scaling displacement
amplitude

We can perform two varieties of cavity state tomogra-
phy by utilizing qubit/cavity entangling operations, CΦ and
Rnn̂,θ, with cavity displacements Dα. With measurements
of zero-photon number probability P0(α) and mean photon
number parity 〈P (α)〉, we are able to measure cuts of the
cavity Q-function and Wigner function, P0(α) = πQ(α)
and 〈P (α)〉 = π

2W (α). By performing these tomography
measurements on a known state, the cavity vacuum state,
we can calibrate our displacement drive strength and nor-
malize our readout signal (see Fig. S8).

A displaced cavity vacuum state will create a photon
number probability distribution Pn

Pn(α) = | 〈n|Dα |0〉 |2 = e−|α|
2 |α|2n

n! . (S9)

We observe that our readout signal follows this same dis-
tribution which we use to calibrate our readout signal
and scale our displacement amplitude. We also follow a
similar scheme when measuring the mean photon parity
〈P 〉 = eiπa

†a of a displaced vacuum state

〈P (α)〉 = Tr[PDα |0〉 〈0|D†α] = e−2|α|2 . (S10)

From this, we see the expected Gaussian envelope asso-
ciated with Wigner function of the cavity vacuum state
which we can also use to calibrate our displacement ampli-
tude. One must be careful though when calibrating with
〈P (α)〉, as a thermal state will follow this same envelope
and may incorrectly skew displacement calibration. We
measure a cavity population P1 = 0.02 in this experiment
which gives a small systematic error in displacement cali-
bration, δα/α ≈ 0.02.

Detecting higher-order nonlinear terms

Before attempting to access higher photon Fock states
of the cavity Hilbert space, we must ensure that higher or-
der terms in our dispersive approximation will not begin
to dominate. For our Hamiltonian, we measure the storage
cavity self-Kerr Ks and the non-linearity of the dispersive
shift χ′qs to determine whether these interactions are suffi-
ciently weak in comparison to dispersive shift χqs.

Characterizing storage cavity self-Kerr

A coherent state, |β〉, evolving under a Hamiltonian,
H/~ = ωsa

†a − Ksa
†2a2 experiences a phase precession

Φ ≈ Ks(|β|2 − 1)t where t is a waiting time. We mea-
sure the cavity Q function of an initially prepared coherent
state |β〉 to observe its phase precession and spreading due
to the Kerr effect which allows us a time resolved method
to determine the cavity self-Kerr (See Fig. S9). This re-
sults in a ratio Ks/χqs of 0.0014 giving a cavity self-Kerr
Ks
2π = 3.61 kHz.

Characterizing non-linearity of the dispersive interaction

According to the expansion of the dispersive Hamiltonian
(see section, ‘Hamiltonian parameters’), the dispersive shift
χqsa

†a |e〉 〈e| will contain a small non-linear dependence on
photon number, χ′qsa†2a2 |e〉 〈e|. This becomes more obvi-
ous at higher photon numbers n when nχ′qs becomes com-
parable to χqs. Performing the Ramsey interferometer ex-
periment shown in Fig. S10, we can observe the qubit state
revival with higher mean photon numbers, up to n̄ = 25
photons . To first order, the non-linearity in the dispersive
shift will result in a small change in the qubit state revival
time trevival = 2π

χqs−|β|2χ′qs
. We use this measurement as a

time-resolved method to compare χqs to χ′qs resulting in a
ratio χ′qs/χqs = 0.0018 giving a nonlinear shift χ′qs = 4.2
kHz.

Conditional/unconditional drives in the
strong-dispersive regime

In this experiment, we use fixed frequency interactions
and qubit/cavity drives in order to generate and manipulate
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entanglement. We can perform both conditional and un-
conditional qubit/cavity operations by controlling the du-
ration and shape of the driving fields used. The following
sections will describe how we can achieve these operations
and estimate their limitations.

Conditional qubit rotations

Due to the state-dependent shift between qubit and
storage cavity χqs, the qubit transition frequency is de-
pendent on photon number which we can represent as
ωnq = ωq − χqsn where n is the number of photons in the
storage cavity. The idea behind the conditional qubit ro-
tation is to perform a drive that is selective on only one
of these transitions in order to entangle the qubit and cav-
ity states. This can only follow exactly for a qubit pulse
of infinite duration. Fortunately, we can still realize this
operation approximately for pulse durations much greater
than 1/χqs.

Using Eq. 1 of the main text, we can introduce a classi-
cal drive on resonance with the mth photon number split
peak ωmq resulting in the Hamiltonian (using the interaction
picture)

H/~ = −χqs(a†a−m) |e〉 〈e|+ ε(t)σy (S11)

where ε(t) is a time-dependent real value representing the
amplitude envelope of the microwave drive (we will ignore
the phase of the drive) and σy is the Pauli spin operator
about the y-axis of the Bloch sphere. We can represent this
Hamiltonian in a block diagonal form

H/~ =
∑
n

Hn/~ |n〉 〈n|

=
∑
n

{−χqs(n−m) |e〉 〈e|+ ε(t)σy} |n〉 〈n| . (S12)

Taking each block, we can transform into a rotating frame

H̃n/~ =
∑
n

ε(t)ei∆n,mt|e〉〈e|σye
−i∆n,mt|e〉〈e| (S13)

where ∆n,m = ωnq −ωmq . We can predict the evolution of a
qubit cavity state |ψ(t)〉 by the time-dependent Schrödinger
relation

|ψ̇n(t)〉 = − i
~
H̃n(t) |ψn(t)〉 . (S14)

For a state containing exactlym photons, this evolution will
produce a qubit rotation Rŷ,θ = ei

θ
2σy where θ = 2

∫
ε(t)dt.

We can approximate this interaction for all other photon
number states |ψn 6=m(t)〉 by looking at the first order Dyson
expansion

|ψn(t)〉 ≈
{

1− i

~

∫ t

dsH̃n(s)
}
|ψn(0)〉 . (S15)

For an initial state |ψ(0)〉 =
∑
n 6=m Cn |g, n〉, this produces

|ψ(t)〉 ≈
∑
n 6=m

Cn{|g, n〉 −
i

~

∫ t

0
dsH̃n(s) |g, n〉}

=
∑
n 6=m

Cn{|g, n〉

− i
∫ t

0
dsε(s)ei∆n,ms|e〉〈e|σye

−i∆n,ms|e〉〈e| |g, n〉}

=
∑
n 6=m

Cn{|g, n〉 −
∫ t

0
dsε(s)ei∆n,ms |e, n〉}

≈
∑
n 6=m

Cn{|g, n〉 − ε̂{∆n,m} |e, n〉} (S16)

where ε̂{ω = ∆n,m} is the Fourier transform of the drive
amplitude envelope ε(t) at a frequency ∆n. This produces
a normalized final state at a time τ as

|ψ(τ)〉 = 1√
1 + ε̂{∆n}2

∑
n6=m

Cn{|g, n〉 − ε̂{∆n} |e, n〉}

This allows us to put an estimate on the amount of unde-
sired qubit population produced when performing a selec-
tive qubit rotation. We will define the ‘selectivity’ of the
qubit drive by its ability to leave all other occupied cav-
ity states |ψ〉 =

∑
n 6=m Cn |g, n〉 in the qubit ground state.

This gives the relation for selectivity

S = |〈n, g|ψ(τ)〉|2 =
∑
n 6=m

|Cn|2

1 + ε̂[∆n,m]2 (S17)

For example, when we wish to perform a conditional qubit
rotation on the mth photon number split peak, we use a
shaped qubit pulse ε(t) = Ae−σ

2
ωt

2/2 where σω is the spec-
tral width of the qubit pulse and A =

√
8/πσω is the am-

plitude of the drive required to perform a qubit π rotation
on the ωmq transition. We use σω = 800 kHz such that we
have a selectivity between the mth level and the (m± 1)th

level as S = (1 + π
8 e
−χ2

qs/σ
2
ω )−1 > 0.99. This results in an

approximate qubit/cavity entangling operation similar to
Eq. 1 in the main text

Rmŷ,π = |m〉 〈m| ⊗Rŷ,π +
∑
n 6=m

eiξn |n〉 〈n| ⊗ 1 (S18)

where |m〉 is the selected mth photon Fock state and ξn
is an induced photon-dependent phase accumulation on all
other Fock states.

For this experiment we actually have a looser restriction
on the spectral width σω of our selective qubit pulse. In the
qubit/cavity mapping sequence (creating a superposition
of coherent states, |β〉 and |−β〉), we wish to perform the
operation R0

ŷ,π(|2β, g〉 + |0, e〉) = (|2β〉 + |0〉) ⊗ |g〉. This
requires a qubit π rotation on the |0〉 cavity state while
being selective against all other occupied Fock states |n〉
in the state |2β〉 =

∑∞
n=0 Cn |n〉 = e−

|2β|2
2
∑∞
n=0

(2β)n√
n! |n〉.

For this experiment, we choose a Gaussian-shaped pulse
with σω = 4|β|2χqs/5 which gives a selectivity between
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the zero photon Fock state and the displaced cavity state
|2β〉 as S =

∑∞
n=1 |Cn|2(1 + π

8 e
−(nχqs)2/σ2

ω )−1 > 0.99 for
the creation of a cat state of size S = 4|β|2 > 5 photons.
We create cat states with S =19, 32, 38, and 111 photons
using σω = 7.6 MHz, 13.3 MHz, 17.7 MHz, and 39.8 MHz
respectively.

For this operation, we can approximate the form of the
induced photon-dependent phase accumulation ξn. For
transitions with large detunings from the drive frequency
∆n = χqsn� σω, the accumulated phase ξn will follow the
AC stark relationship for slowly varying drive envelopes,
ξn =

∫
ε(t)2dt/∆n. When 1/(2|β|) � 1, each Fock state

|n〉 will result an approximate phase ξn ∝ 1 − n/(8|β|2).
This affects the cavity state in two ways: the photon inde-
pendent term will result in a shift in phase for the coherent
state superposition, this can be calibrated by adjusting the
relative phase of the drive ε; the photon-dependent term
will result in a shift of the coherent state which can be cal-
ibrated by adjusting the relative phase of the experiment’s
rotating frame. Taking these calibrations into account, we
can approximately achieve the ideal description of the con-
ditional qubit rotation described in Eq. 3 of the main text.

Unconditional qubit rotations

When performing direct Wigner tomography, we must be
able to perform qubit rotations independent of the cavity
state. In this experiment the qubit and cavity are coupled
at all times with a dispersive interaction χqsa†a |e〉 〈e|. This
means that any gate which takes a finite time will result in
some non-vanishing qubit/cavity entanglement. We wish
to characterize and minimize these errors for the respective
Hilbert space size we access.

We can rewrite Eq. S12 in terms of Pauli spin operators
σz and σy

H̃/~ =
∑
n

{−χqs(n−m)σz2 + ε(t)σy} |n〉 〈n| . (S19)

This interaction occurs with a constant drive amplitude ε
for a time τ resulting in a block diagonal evolution operator

U(τ) = e−iH̃/~τ

=
∑
n

Un(τ) |n〉 〈n|

=
∑
n

e−iτ{χqs(m−n)σz2 +εσy} |n〉 〈n|

=
∑
n

e−iφnσθn |n〉 〈n| (S20)

where φn = ετ

√
1 +

[
(m−n)χqs

2ε

]2
, θn = arctan

(
(m−n)χqs

2ε

)
,

and σθn = cos (θn)σy + sin (θn)σz. This allows us to write

each photon-dependent operation explicitly as

Un(τ) = e−iφnσθn

= cos(φn)1 + i sin(φn)σθn
= [cos(φn) + i sin(φn)] sin(θn) |n, g〉 〈n, g|

+ [cos(φn)− i sin(φn)] sin(θn) |n, e〉 〈n, e| (S21)
+ sin(φn) cos(θn)(|n, e〉 〈n, g| − |n, g〉 〈n, e|).

Using this relation, we can estimate this operation’s ability
to be independent of all photon number states in a defined
cavity Hilbert space size. For our experiment, we apply
an unconditional qubit π/2 rotation using a square pulse
for time τ = 4 ns. We can compare this operation to an
ideal unconditional qubit rotation Rŷ,π2 to get an estimated
gate fidelity F = | 1

N Tr[R†ŷ,π2 U(τ)]|2 greater than 0.96 for a
Hilbert space size N = 20 photons (this is the approximate
Hilbert space size of the measured cat in Fig. 2 of the main
text). This operation will become increasingly ineffective
for large numbers of photons which is a leading cause for
infidelities in Wigner tomography. This can be corrected
somewhat by moving the qubit drive to a frequency ωmq =
ωq − n̄χqs for a cavity state with mean photon number n̄.
This procedure was required in order to measure our largest
produced cat state.

Conditional cavity displacements

The cavity transition frequency is dependent on the qubit
state resulting in two spectral peaks ωgs and ωes representing
the cavity transition frequency when the qubit is in the |g〉
and |e〉 state respectively. Using Eq. 1 of the main text,
we can introduce a classical drive on resonance with the
ωes transition resulting in the Hamiltonian (in the rotating
frame of the drive)

Hdrive/~ = (ωq−ωes) |e〉 〈e| − χqs |g〉 〈g| a†a
+ ε(t)a† + ε(t)∗a.

In the same manner as the conditional qubit rotation, a
cavity drive with a small spectral width σω � χqs will
be able to selectively drive a displacement Dα conditioned
on the qubit in the excited state |e〉. This results in the
approximate qubit/cavity entangling operation

De
α = 1⊗ eiξ |g〉 〈g|+Dα ⊗ |e〉 〈e| (S22)

where ξ is an induced phase accumulated on |g〉 due to
the AC stark effect. For example, the conditional cavity
displacement De

α acting on a qubit/cavity product state
produces De

α{|0〉 ⊗ (|g〉+ |e〉)} = eiξ |0, g〉+ |α, e〉 resulting
in an entangled qubit/cavity state. This entangling oper-
ation could be used directly in the mapping sequence, but
in practice is ineffective due to its long required gate time.
Though we do not use this operation in our mapping se-
quence we do use this feature for experiment initialization
(see section, ‘Experiment initialization’). A selective dis-
placement De

α can also be achieved by combining a condi-
tional cavity phase shift Cπ with ordinary cavity displace-
ments: De

α = D−α/2CπDα/2.
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Unconditional cavity displacements

We must also ensure that our standard cavity displace-
ments Dα will displace the cavity state unconditional of
the qubit state. Unconditional cavity displacements are
used throughout for qubit/cavity mapping and for Wigner
tomography. For our cavity displacements, we apply a
square-shaped displacement pulse U(τ) where τ = 6 ns
which we estimate a gate fidelity due to finite pulse width
F = | 1

N Tr[D†αU(τ)]|2 > 0.99.
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SUPPLEMENTARY FIGURES
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FIG. S1. Block diagram of the measurement setup.
We use two input lines, one directed into the readout (high-
frequency cavity) mode and another into the storage (low-
frequency cavity) mode. Qubit state manipulations are con-
trolled through this ‘low-frequency’ input line. Our readout sig-
nal is sent through a chain of amplifiers before down-conversion
and finally digitization.
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A
cavity 1

qubit

B
cavity 1

qubit

C
cavity 1

qubit

FIG. S2. Multi-component cat state sequences.
Each quantum circuit diagram (A, B, C) describes
the pulse sequences used to create the cavity states
shown in Fig. 4(A, B, C). β1, β2, β3, β4, and
β5 equals |β|, |β|e−iπ3 , |β|eiπ3 , |β|2 e

−i 2π
3 , and |β|eiπ2

respectively with |β| =
√

7 and θ1, θ2 equals
2 arccos 1√

3 , 2 arccos 1
2 respectively. Note that the

phase of each selective drive R0
n̂,θ will determine the

phase of the interference fringes between the pro-
duced superpositions of coherent states.
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FIG. S3. Heisenberg-limited phase estimation. (A) The
circuit diagram outlines the methods to perform a proof-of-
principle Heisenberg-limited phase estimation. In two differ-
ent experiments, we create coherent states or cat states and
compare phase resolution δΦ to each state’s mean energy n̄.
(B,C) To do this, we implement a cavity phase shift Φ on
each prepared cavity state before reversing the mapping pro-
cess. We measure the resulting qubit state population Pe for
coherent states (D) and cat states (E) with various mean en-
ergies. (F) Using these measurements, we can observe the
phase resolution for a coherent state (�) and a cat state (�)
to scale as 1/

√
n̄ and 1/n̄, respectively, demonstrating a proof-

of-principle for Heisenberg-limited phase estimation using cat
states. Note that in practice a cat state is increasingly sen-
sitive to photon decay at larger energies. This gives a phase
resolution δΦC ∝ en̄κτ/n̄ where κ is the cavity decay rate
and τ is the total time of state preparation and phase detec-
tion (shown in F: ), which will become unfavorable when
n̄κτ > 1.
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FIG. S4. Qubit state revival using Ramsey interferome-
try. A quantum circuit (A) outlines the sequence for Ramsey
interferometry of a coherent state under a dispersive interac-
tion. An initial state ψ(0) = |β〉 ⊗ {|g〉 + |e〉} is prepared and
precesses under the operation, CΦ=χqst = eiχqsa

†a|e〉〈e|. We per-
form this measurement for various displacement amplitudes (B:
β = 0 �, 0.5 �, 1.0 �, and 1.5 �). Qubit state coherence
appears to decay due to this interaction at a rate proportional
to e−

1
2 (|β|χqst)2

. Qubit state revival occurs at a waiting time
trevival = 2π/χ. Notice the width in the revival peak sharply
decreases with larger displacement amplitudes (C).



12

FIG. S5. Observing each step of
the qcMAP. Measuring qubit/cavity
correlated Q-functions shows the cavity
state phase and amplitude throughout
each step in the mapping protocol (A).
Cavity tomography is performed with
a 21 X 21 grid of displacements using a
span of 8α in both quadratures (B). By
performing a selective π or π/2 rotation
conditioned on the zero-photon Fock
state, we can detect Q-functions cor-
related to the qubit state. Q(α)|g〉 (�)
corresponds to cavity state population
with the qubit in |g〉, Q(α)|e〉 (�) corre-
sponds to cavity state population with
the qubit in |e〉, and Q(α)|g〉+|e〉 (�)
corresponds to cavity state population
with the qubit in |g〉+ |e〉. This allows
us to observe qubit/cavity states dur-
ing each step (C[a-h]) and ultimately
calibrate the qcMAP protocol.

FIG. S6. Measured and recon-
structed cavity state Wigner
function. Direct measurement
(A) and reconstruction (B) of the
cavity state Wigner function for a
state |ψ〉 = N{|β〉 + |−β〉} where
|β| =

√
7 and N ≈ 1√

2 . Mean val-
ues for cavity state observables can
be calculated both from the direct
Wigner measurement and from the
reconstructed cavity state density
matrix.
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FIG. S7. Write/Read analysis of
qcMAP. In order to diagnose possible
qcMAP errors, we perform both quan-
tum process tomography and Ramsey ex-
periments on the map/map-back operation.
Quantum process tomography (A, C) of the
map/map-back operation on the qubit re-
veals increased phase errors at larger photon
numbers (note: all imaginary portions of the
process matrix are < |0.06|). This suggests
that phase coherence is a dominant source of
error in the mapping operation and that this
error is increasingly sensitive to photon loss
in the cavity. This Ramsey experiment (B,
D) shows a recovered contrast in qubit co-
herence of 74, 68, 67, and 31% for cat states
with estimated sizes up to 100 photons.
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FIG. S8. Calibrating displacement amplitude and removing cross-Kerr readout skewness Using conditional qubit
rotations R0

n̂,πor conditional cavity phase shifts Cπ, we can measure the photon number probability Pn or the mean photon parity
〈P 〉 of the cavity state. Shown here (A, B), are the circuit diagrams for detecting Pn and 〈P 〉, respectively, as a function of α.
Residual cavity-cavity cross-talk (also known as the Cross-Kerr χsr) will skew the readout signal for large displacements. This
background signal can be corrected by comparing to an additional experiment which is qubit state-independent. Shown (C) is the
uncorrected signal for detecting P0 (�) after various displacements and its corresponding ‘correction’ experiment (�). Shown in (D)
is the uncorrected signal for detecting 〈P 〉 (�) of various displacements and its corresponding ‘correction’ experiment (�). From
these measurements, we can deduce Pn (E: n = 0 �, 1 �, 2 �, 3 �, 4 �, 5 �, 6 �, 7 � photons) and 〈P 〉 (F: �)of a displaced
vacuum state. Note that these measurements for P0 and 〈P 〉 are measurements of cuts in the cavity Q-function and Wigner function
of a vacuum state.
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FIG. S9. Observing the cavity self-Kerr. The cavity Hamil-
tonian obtains some non-linearity known as the cavity self-Kerr
Ksa

†2a2 by its off-resonant coupling to the qubit mode. This in-
teraction will induce a photon-dependent phase precession. We
observe this interaction by creating a coherent state, allowing
the state to evolve under U(t) = eiKsa

†2a2t, then subsequently
measure the cavity Q-function (A). For a coherent state |β〉
where |β| =

√
7, we observe a coherent state precession and

phase-collapse for waiting times t = 0, 1, 2, and 4µs (B). We
detect a self-Kerr Ks

2π = 3.61 kHz by performing a global fit to all
Q-function with displacement amplitude |β|, initial cavity phase
Φ0, and cavity self-Kerr Ks as fit parameters. This results in a
ratio Ks/χqs of 0.0014. Notice the increasing angular spread of
the coherent state as waiting time increases, a feature inherent
under a Kerr interaction and a source for qcMAP infidelity.
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FIG. S10. Observing the non-linearity of the disper-
sive shift. We perform Ramsey interferometry (see Fig. S4)
and observe the qubit state revival for displacements up to
|β| = 5 (A). These measurements reveal the skewness in
revival time due to a small photon dependence of the dis-
persive shift, χ′qsa

†2a2. Taking this shift in revival time
into account gives trevival ≈ 2π

χqs−|β|2χ′qs
. For small ratios

n̄χ′qs/χqs � 1 where n̄ = |β|2, this follows the linear relation-
ship trevival ≈ 2π

χqs
(1 + n̄χ′qs/χqs) which allows us to measure

a ratio χ′qs/χqs = 0.0018 resulting in a χ′qs
2π = 4.2 kHz (B).
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SUPPLEMENTARY TABLES

TABLE SI. Hamiltonian parameters. Using a normal state
resistance measurement to determine the Josephson energy EJ
and experimental measurements of Kq, χqs, and χqr to deter-
mine each mode’s flux coefficient φi, we can predict the values of
higher-order interactions in this three-mode Hamiltonian. These
estimates comes from the Taylor expansion of the cosϕ term in
Eq. 19 and collecting all terms in a normal order. This ta-
ble shows the measured or predicted value of each term in the
Hamiltonian (Eq. 21) up to O(ϕ6).

Order Term Relation Measurement Prediction

ωq/2π - 7.4552 GHz -
- ωs/2π - 8.1794 GHz -

ωr/2π - 9.3622 GHz -

Kq/2π 133.5 MHz -
O(ϕ4) Ks/2π 1

4!

(4
2

)(2
2

)
EJφ

4
i 3.6 kHz 2.7± 0.4 kHz

Kr/2π - 2.7± 0.4 kHz

χqs/2π 2.36 MHz -
O(ϕ4) χqr/2π 1

4!

(4
1

)(3
1

)(2
1

)(1
1

)
EJφ

2
iφ

2
j 2.40 MHz -

χrs/2π - 2.7± 0.3 kHz

K′q/2π - 6± 1 MHz
O(ϕ6) K′s/2π 1

6!

(6
3

)(3
3

)
EJφ

6
i - 600± 100 mHz

K′r/2π - 500± 100 mHz

χ′qs/2π 4.2 kHz 0.4± 0.1 kHz
χ′qr/2π - 400± 100 Hz
χ′sq/2π - 80± 10 kHzO(ϕ6)
χ′rq/2π

1
6!

(6
2

)(4
2

)(2
1

)(1
1

)
EJφ

2
iφ

4
j - 80± 10 kHz

χ′rs/2π - 1.7± 0.3 Hz
χ′sr/2π - 1.6± 0.3 Hz

O(ϕ6) χqsr/2π 1
6!

(6
1

)(5
1

)(4
1

)(3
1

)(2
1

)(1
1

)
EJφ

2
iφ

2
jφ

2
k - 370± 50 mHz
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TABLE SII. Inferred expectation values of observables
Shown are operators, O(a†a) and their corresponding complex
functions, o(α∗, α) with inferred expectation values of pho-
ton number a†a, position 1

2 (a† + a), momentum 1
2i (a

† − a),
and fidelity to a target state 〈ψtarg|ρ̂|ψtarg〉 where |ψtarg〉 =
N (|β〉+ |−β〉) and |β| =

√
7.

Operator Complex Function Expection value
O(a†, a) o(α∗, α) Tr[Oρ] 1

π

∫
oWd2α

a†a α∗α− 1
2 6.79 6.65

1
2 (a† + a) 1

2 (α∗ + α) 0.09 0.13
1
2i (a

† − a) 1
2i (α

∗ − α) −0.01 −0.01
|ψtarg〉 〈ψtarg| Wtarg(α∗, α) 0.78 0.81
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