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We analyze a quantum reservoir engineering method, originally introduced by Sarlette et al. [Phys. Rev. Lett.
107, 010402 (2011)], for the stabilization of nonclassical field states in high-quality cavities. We generalize the
method to the protection of mesoscopic entangled field states shared by two nondegenerate field modes. The
reservoir consists of a stream of atoms consecutively interacting with the cavity. Each individual atom-cavity
interaction follows the same time-varying Hamiltonian, combining resonant with nonresonant parts. We gain
detailed insight into the competition between the engineered reservoir and decoherence. We show that the
operation is quite insensitive to experimental imperfections and that it could thus be implemented in the near
future in the context of microwave cavity or circuit quantum electrodynamics.
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I. INTRODUCTION

Nonclassical electromagnetic field states are extremely im-
portant both for a fundamental understanding of the quantum
properties of light and for their possible use in practical
applications. For instance, fluctuations on one quadrature
can be brought below those of the vacuum state or below
those of a classical coherent state by resorting to squeezed
states (SSs) [1]. They lead to interesting methods for high-
precision measurements and metrology [2]. Among others,
they are considered for reducing the noise of gravitational
wave interferometers below the standard quantum limit [3].

Mesoscopic field state superpositions (MFSSs) are also
the focus of an intense interest. They involve a quantum
superposition of two quasiclassical coherent components with
different complex amplitudes. These counterintuitive states
bridge the gap between the quantum and the classical worlds
and shed light onto the decoherence process responsible for
the conspicuous lack of superpositions at our scale [4].

Finally, entangled superpositions of mesoscopic states
(ESMSs) shared by several field modes are even more
intriguing. They violate generalized Bell inequalities [5],
illustrating the nonlocal nature of quantum physics. However,
their nonlocal character is rapidly lost in a fast decoherence
process [6], driving them back into a statistical mixture that
can be understood in terms of a classical local hidden variable
model. This interplay of decoherence and nonlocality opens
fascinating perspectives for exploring the limits of the quantum
world.

In principle, SSs and MFSSs could be prepared in the
optical domain by letting a coherent laser pulse propagate in
a nonlinear medium whose index of refraction depends on the
light-pulse intensity [7]. In a Kerr medium, this dependence is
linear and the field would evolve from an initial coherent state
|α〉 under the action of the Kerr Hamiltonian:

HK = ζKN + γKN2. (1)

*alain.sarlette@ugent.be

Here N is the photon number operator, ζK measures the linear
part of the refraction index and γK is the Kerr frequency
describing the strength of the nonlinearity. In the following, we
use units such that h̄ = 1. Note that the collisional interaction
Hamiltonian for an N-atom sample in a tightly confining
potential or in an optical lattice is similar to HK [8].

Depending on the interaction time tK , the Kerr-propagated
state e−itK HK |α〉 can take a number of nonclassical forms
[[4], Sec. 7.2], including

(i) squeezed states for tKγK � π ;
(ii) states with “banana-shaped” Wigner function for

slightly larger tKγK ;
(iii) mesoscopic field state superpositions |kα〉 with k

equally spaced components for tKγK = π/k [9].
(iv) in particular, for tKγK = π/2, a MFSS of two coherent

states with opposite amplitudes:

|cα̃〉 = (|α̃〉 + i|−α̃〉)/
√

2, (2)

with α̃ = αe−iζK tK .
The top panels of Fig. 1 present the Wigner functions of the

states (i)–(iv) for a mean photon number |α|2 = 2.7.
This preparation method by a deterministic unitary evo-

lution is simple in its principle, but its implementation is
extraordinarily difficult for propagating light fields due to the
weakness of the Kerr nonlinearity [10].

Other methods for the production of these nonclassical
states have been proposed or realized in the context of
trapped ions [11,12] or cavity quantum electrodynamics
(CQED) [4,13–19]. Both systems implement the “spin-spring”
model, which is the simplest nontrivial quantum situation
of a two-level system coupled to a harmonic oscillator,
embodied by the harmonic motion of the ion or by a
single field mode. Detection-conditioned schemes expand
the possibilities of nonclassical state production methods
by applying a measurement operation after deterministic
production of an intermediate state. Measurement backaction
generates different final states conditioned by the stochastic
detection outcome [20]. In the microwave CQED context,
detection-conditioned preparation of MFSSs and ESMSs can
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FIG. 1. (Color) Wigner functions W (γ ), with the same vertical, horizontal axes and color scales for all frames. (a)–(d) Nonclassical field
states e−itK HK |α〉 generated by propagation of an initial coherent state |α〉 with a mean photon number |α|2 = 2.7 through a Kerr medium: (a)
2-component MFSS given by Eq. (2) for tKγK = π/2; (b) 3-component MFSS for tKγK = π/3; (c) “banana-state” for tKγK = 0.28, and (d)
squeezed state for tKγK = 0.08 � π . (e)–(h) Similar states stabilized, despite decoherence, by the atomic reservoir onto which we focus in
this paper. Frame (e) corresponds to our reference two-component MFSS.

be achieved by the dispersive interaction of an initial coherent
field state with a two-level atom. This atom is initially prepared
in a state superposition, and finally detected in an appropriate
basis [4,14].

All these preparation techniques do not solve, however, the
problem of stabilizing (“protecting”) a selected nonclassical
state for long times in spite of the unavoidable coupling of the
system S to its environment E . Reservoir engineering can be
used to stabilize target quantum states by strongly coupling
S to an “engineered” environment, or reservoir R, a large
quantum system with many degrees of freedom. The reservoir
is designed so that it drives S, whatever its initial state, toward
a unique target “pointer state,” a stable state of S coupled
to R [21,22]. The state of S remains close to this pointer
state even in the presence of E , provided S is more strongly
coupled to R than to E . An engineered reservoir thus achieves
much more than the preparation of a target state. It effectively
stabilizes the system close to it for arbitrarily long times.

Reservoir engineering is experimentally challenging.
Reservoirs made up of lasers and magnetic fields for trapped-
ion oscillators have been proposed [19,23,24] and demon-
strated [25]. Recently, a reservoir has been used to generate
entanglement of spin states of macroscopic atomic ensembles
[26].

In the context of CQED, the reservoir may be a stream of
atoms interacting with the field. An early proposal [27] relied
on the so-called “trapping state conditions” for the micromaser
[28], which require a very fine tuning of the parameters and
can only be properly achieved in the case of a zero-temperature
environment. Reservoirs composed of atoms in combination
with external fields have also been proposed to stabilize one-
mode squeezed states [29] and two-mode squeezed vacuum
entanglement [30].

In Ref. [31], we proposed a robust reservoir engineering
method for CQED. It generates and stabilizes nonclassical
states of a single mode of the radiation field, including SSs

and MFSSs. The reservoir is made up of a stream of 2-level
atoms, each prepared in a coherent superposition of its basis
states. They interact one after the other with the field according
to the Jaynes-Cummings model before being discarded. The
discarding procedure is reminiscent of the “reset” operation
performed in other contexts [25,32]. The key idea is to let
each atom undergo a composite interaction with the field:
dispersive, then resonant, then dispersive again. The composite
interaction can be tailored to stabilize a unique pointer state
of the form e−itK HK |α〉 for any chosen tKγK and α (at least in
principle). It thus gives access to all the nonclassical states
resulting from the action of a Kerr Hamiltonian upon an
initially coherent state.

The method is quite general and could be implemented in a
variety of CQED settings, particularly in the active context of
circuit QED [33] or in that of microwave CQED, with circular
Rydberg atoms and superconducting Fabry-Perot cavities. For
the sake of definiteness, we shall focus in this paper on
the microwave CQED case, and particularly on the current
Ecole Normale Supérieure (ENS) CQED experiment whose
scheme is depicted in Fig. 2. The bottom panels of Fig. 1
present the results of numerical simulations of our reservoir
for the ENS experiment, with interaction parameters chosen
to reproduce the states generated by the Kerr Hamiltonian (top
panels).

FIG. 2. (Color online) Scheme of current ENS CQED experiment.
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The present paper is intended to provide an in-depth de-
scription of this single-mode reservoir engineering procedure,
with a detailed analysis of the physical mechanism of state
stabilization. We also discuss the competition between the
engineered reservoir and the ordinary cavity environment,
giving simple insights into the finite final fidelity of the
prepared state.

We finally extend the scheme proposed in Ref. [31] to the
stabilization of entangled superpositions of mesoscopic states
of two field modes. The atoms of the reservoir undergo a
composite interaction with two modes of the same cavity,
combining dispersive and resonant parts for each mode.
This proposal opens interesting perspectives for studying the
interplay between entanglement, nonlocality, and decoherence
in the context of mesoscopic quantum states.

The paper is organized as follows: We consider the single-
mode case for most of the paper and extend it to two modes in
the last section. Section II describes the experimental scheme
and the principle of the method. Section III discusses, as a
building block for the next sections, how a stream of atoms
in resonant interaction with one field mode stabilizes an
approximately coherent field state. Section IV introduces the
composite interaction: nonresonant, resonant, and nonresonant
again. Here, we treat the nonresonant interactions in the
“dispersive regime,” assuming a large atom-cavity detuning.
We thus introduce in the simplest way the mechanism
generating nonclassical states. Section V details the more
realistic case of intermediate atom-cavity detuning. We show
that the main features of Section IV are recovered, exhibiting
the robustness of the method. Section VI analyzes the effects
of decoherence due to the cavity damping and of imprecisions
in the experimental parameters. We find that the method is
robust against realistically large imperfections. Section VII
finally presents the stabilization of a two-mode ESMS.

II. GENERAL DESCRIPTION

The scheme of the ENS experiment is depicted in Fig. 2 (see
Refs. [4,15] for details). A microwave field of frequency ωc is
trapped in the superconducting cavity C (damping time Tc =
65 ms). Atoms are sent one after the other through C. They
cross its standing wave Gaussian mode at a constant, adjustable
velocity v. The mode interacts with the transition between the
two atomic levels |g〉 and |e〉 (circular Rydberg states with
principal quantum numbers 50 and 51). A static electric field
applied across the cavity mirrors is used to adjust the atomic
transition frequency ω0 and hence the atom-cavity detuning
δ = ω0 − ωc � ωc via the Stark effect. Varying the electric
field during the atom-field interaction makes it possible to
engineer the detuning profile δ(t). Zero- and small-δ values are
used for the resonant and nonresonant parts of the interaction.
Making δ very large allows us to effectively turn off the atom-
field interaction.

We describe the atom and field states in a frame rotating
at frequency ωc, such that the field state remains constant in
absence of interaction. The atoms are prepared in state |g〉
in B by a time-resolved laser and radiofrequency excitation
of a velocity-selected thermal rubidium atomic beam. Before
entering C, the atoms are cast in a coherent superposition of
|g〉 and |e〉 in the low-quality cavity R1 (“first Ramsey zone”),

driven by a classical microwave source at frequency ωc. We set
the phase of the coherent superposition for each atom so that
it enters the cavity in the initial state |uat〉 = cos(u/2)|g〉 +
sin(u/2)|e〉 with u > 0. In a Bloch-sphere representation with
|e〉 at the north pole, |uat〉 corresponds to a vector in the Z-X
plane at an angle u with the north-to-south vertical axis.

A second classical microwave pulse in the second Ramsey
zone R2 is followed by a detection in the {|e〉,|g〉} basis in the
field-ionization detector D. This detection scheme amounts
to a projective measurement of the atomic state at the exit
of C, in a basis that can be chosen by properly setting the
microwave pulse in R2. For the engineered reservoir operation,
the result of this final atomic state detection is irrelevant.
Detection results are, however, useful in other phases of the
experiment. In particular, they may be used to reconstruct
the field state generated by the engineered reservoir, using a
method described in Ref. [15].

Let us first consider the atom-cavity interaction for one
atom that crosses cavity axis at t = 0. It is ruled by the Jaynes-
Cummings Hamiltonian HJC. Neglecting far off-resonant
terms (rotating wave approximation, negligible interaction
with other cavity modes), we have

HJC = δ(t)

2
(|e〉〈e| − |g〉〈g|) + i

�(s)

2
(|g〉〈e|a† − |e〉〈g|a),

(3)

where �(s) is the atom-cavity coupling strength (vacuum Rabi
frequency) at position s = vt along the atomic trajectory; a is
the photon annihilation operator in C. The photon number
operator N = a†a = ∑

n n|n〉〈n| defines the Fock states basis
{|n〉}.

The coupling strength �(s) is determined by the atomic
transition parameters and by the cavity mode geometry. It
writes here �(s) = �0e

−s2/w2
, with �0/(2π ) = 50 kHz and

w = 6 mm. To get a finite total interaction duration T , we
assume that the coupling cancels when |s| > 1.5w. The total
interaction time of the atom with the field is thus T = 3w/v.
We have checked in numerical simulations that this truncation
of interaction time has negligible effects.

The evolution operator, or propagator U, associated with
HJC expresses the transformation that the joint atom-cavity
state undergoes during interaction. The Schrödinger equation
for U, starting at the initial time t = t0, is

d

dt
U (t) = −iHJC (t)U (t) with U (t0) = I, (4)

where I is the identity operator. We call UT the propagator
obtained by integration of Eq. (4) over one full atom-cavity
interaction, which lasts from −T/2 to T/2.

We represent the action of UT over the field state by the
operators MUT

g and MUT
e such that

UT (|uat〉|ψ〉) = |g〉MUT

g |ψ〉 + |e〉MUT

e |ψ〉,
for any pure initial field state |ψ〉. Tracing over the final atomic
state, the modification of the field density operator ρ due to
the interaction with the atom is thus finally given by the Kraus
map [34]

ρ → MUT

g ρMUT †
g + MUT

e ρMUT †
e . (5)
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To implement reservoir action, we let a stream of atoms
interact with the field one after the other, each with the same
parameter set [detuning profile, atom velocity v and initial state
|uat〉 = cos(u/2)|g〉 + sin(u/2)|e〉]. Thus each atom affects the
field according to Eq. (5). The interaction with atom k + 1
begins as soon as the interaction with atom k ends. Consecutive
atoms are thus separated by the time interval T . We call ρk the
cavity state just after the interaction with the kth atom obtained
by tracing over this atom’ s irrelevant final state. This operator
ρk evolves as

ρk = MUT

g ρk−1MUT †
g + MUT

e ρk−1MUT †
e . (6)

State stabilization by reservoir engineering amounts to tai-
loring a Kraus map for the field from a constrained physical
setting. Our goal is to stabilize a pure pointer state ρ∞ =
|ψ∞〉〈ψ∞|. It is then necessary to build the Kraus map such
that it admits ρ∞ as a fixed point. Starting with ρk−1 = ρ∞,
the right-hand side of Eq. (6) is a statistical mixture of two
pure states. Those two pure states must be both equal to |ψ∞〉
if their mixture is the pure state ρk = ρ∞. Thus, |ψ∞〉 must be
an eigenstate of both MUT

g and MUT
e .

We have shown in Ref. [31] that it is possible to engineer
the atom-cavity interaction so that the Kraus map leaves
|ψ∞〉 ≈ e−itK HK |α〉 invariant, in which α and γKtK in Eq. (1)
can be chosen at will. Explicitly, we build UT by sandwiching
a resonant interaction (δ = 0 for t ∈ [−tr/2, tr/2]) symmet-
rically between two dispersive interactions with opposite
detuning: δ = δ0 before the resonant interaction, δ = −δ0 after.
(We assume a positive δ0 value for the sake of definiteness.)
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FIG. 3. (Color online) Top frame shows a scheme of the prop-
agators corresponding to the successive steps in the composite
interaction. Bottom frame shows a schematic time profile of δ(t)
[difference between the tunable frequency ω0 of the atomic transition
and the fixed frequency ωc of the single cavity mode (full line)] and
�(vt) (dashed line) during cavity crossing by one atomic sample. We
take t = 0 when the atom is at cavity center.

This experimental sequence is illustrated in Fig. 3. Each
resonant or dispersive part of the interaction is characterized by
a set of parameters that we denote by q = (t1,t2,v,δ) where t1 is
the start time, t2 is the stop time, and δ is the chosen (constant)
detuning. The corresponding propagators are denoted Uq .

To compute these propagators, we use the fact that each
two-dimensional subspace spanned by (|g,n + 1〉, |e,n〉) is
invariant under the action of HJC. The state |g,0〉 does not take
part in the evolution. We can thus view Uq as applying rotations
in parallel on a set of Bloch spheres Bn (n = 0,1, . . .), whose
respective Z axes are defined by |g,n + 1〉 at the south pole and
|e,n〉 at the north pole. These rotations can be decomposed into
rotations around the X, Y , and Z axes of the Bloch spheres. We
use the notation fN = f (N) = ∑

n f (n)|n〉〈n| = ∑
n fn|n〉〈n|

for arbitrary functions f of n and we use the relation

af (N) = f (N + I)a. (7)

We can then define generalized rotations, acting in parallel
around the associated axes of all Bloch spheres with photon-
number-dependent rotation angle:

X(fN) = |g〉〈g| cos(fN/2) + |e〉〈e| cos(fN+I/2)

− i|e〉〈g|a sin(fN/2)√
N

− i|g〉〈e| sin(fN/2)√
N

a†, (8)

Y(fN) = |g〉〈g| cos(fN/2) + |e〉〈e| cos(fN+I/2)

− |e〉〈g|a sin(fN/2)√
N

+ |g〉〈e| sin(fN/2)√
N

a†, (9)

Z (fN) = |g〉〈g|eifN/2 + |e〉〈e|e−ifN+I/2. (10)

As shown in Secs. III and IV, Y(fN) with f (n) proportional to√
n + 1 corresponds to a resonant interaction and Z(fN) with

f (n) proportional to n corresponds to a nonresonant interac-
tion in the dispersive regime δ 
 �. See also Appendix A for
more details.

III. ENGINEERED RESERVOIR FOR COHERENT STATE
STABILIZATION

The coherent state |α〉 is obtained by the action of the
displacement operator Dα = eαa†−α†a onto the vacuum [4]:

|α〉 = Dα|0〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉. (11)

We show here how a brief resonant interaction (δ = 0) with
weakly excited atoms provides an engineered reservoir whose
pointer state is close to a coherent state [31].

Stabilization of coherent states is not an amazing feat. They
are indeed directly generated by a classical radiation source
weakly coupled to the cavity. This is a routine operation
in microwave CQED experiments. However, the situation
described in this section is an essential building block for
the stabilization of nonclassical states. Moreover, it is an
interesting micromaser situation [27,35], in which the small
excitation of the atoms leads to a steady state with finite energy
even though the cavity is assumed to be lossless.

We consider a resonant interaction over a time interval tr
corresponding to the parameter set r = (−tr/2, tr/2, v, 0). A
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direct integration yields the associated propagator

Ur = Y
(
θr

N

) = |g〉〈g| cos
(
θr

N/2
) + |e〉〈e| cos

(
θr

N+I/2
)

− |e〉〈g|a sin
(
θr

N/2
)

√
N

+ |g〉〈e| sin
(
θr

N/2
)

√
N

a†, (12)

with

θr
n = θr

√
n, θr =

∫ tr /2

−tr /2
�(vt)dt. (13)

This readily yields

MUr

g = cos

(
u

2

)
cos

(
θr

N/2
) + sin

(
u

2

)
sin

(
θr

N/2
)

√
N

a†,

(14)

MUr

e = sin

(
u

2

)
cos

(
θr

N+I/2
) − cos

(
u

2

)
a

sin
(
θr

N/2
)

√
N

.

A pointer state |ψ∞〉 of the reservoir associated with this
resonant interaction must be an eigenstate of both Mg and
Me given by Eq. (14). Writing |ψ∞〉 = ∑

ψn|n〉 in the Fock
states basis, we get a condition on the coefficients ψn for
n = 0,1,2, . . .:

sin
(
θr
n+1/2

)
ψn+1 = tan

(
u

2

)[
1 + cos

(
θr
n+1/2

)]
ψn. (15)

This relation allows us to compute all the ψn coefficients
starting from ψ0 �= 0, except if sin(θr

m/2) = 0 for some m.
This case corresponds to the existence of a trapping state
|m − 1〉 [36], which is then uncoupled from |m〉 in the reservoir
action. The Hilbert subspace spanned by the photon numbers
�(m − 1) is then decoupled from its orthogonal complement,
spanned by photon numbers �m, such that the steady state
depends on the initial conditions. Since all states considered
in the remainder of the paper have an energy lower than 20
photons, we truncate the Hilbert space to n � nmax = 50. This
allows us to avoid trapping states by restricting θr to small
enough values such that sin(θr

n+1/2) �= 0 for all 0 � n � nmax.
Dividing Eq. (15) by sin(θr

n+1/2) gives then the recurrence
relation

ψn+1 = tan(u/2)

tan
(
θr
n+1/4

)ψn, (16)

which defines a unique normalized pointer state.
For (θr

nmax
/4)2 � 1, Eq. (16) can be approximated by

ψn+1 ≈ 4 tan(u/2)

θr

√
n + 1

ψn,

which defines a coherent state |α∞〉 with α∞ = 4 tan(u/2)/θr

[compare with the last member of Eq. (11)].
This α∞ value can be retrieved by a simplified physical

reasoning, as in Ref. [31]. Assume that the cavity already
contains a large coherent field of amplitude α 
 1. The
incoming atoms then undergo a resonant Rabi rotation in
this field. The atomic Bloch vector starts initially toward the
south pole of the Bloch sphere. It rotates by an angle −θrα.
If θrα < 2u (θrα > 2u), the final atomic state has a lower
(larger) energy than the initial one; that is, on average gives
energy to (draws energy from) the field. The energy exchange
thus stabilizes a field with amplitude α∞ = 2u/θr .
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FIG. 4. Reservoir action with resonant atom-field interaction.
(a) Mean photon number 〈ψ∞|N|ψ∞〉 of the pointer state |ψ∞〉.
Grayscale axis is linear in

√〈ψ∞|N|ψ∞〉. The shaded zone is
delimited such that the corresponding states have at least a 99%
fidelity |〈ψ∞|α∗〉|2 to a coherent state |α∗〉 of same mean photon
number |α∗|2 = 〈ψ∞|N|ψ∞〉. On the top-left corner, pointer states
have significant population outside the truncated Hilbert space. On
the top-right part, |〈ψ∞|α∗〉|2 drops to ∼98% as u approaches π/2. (b)
Evolution of the fidelity indicator ln | ln〈ψ∞|ρk|ψ∞〉| as a function of
the number of atom-field interactions (i.e., Kraus map iterations) k,
starting from vacuum ρ0 = |0〉〈0|. For illustration we have chosen an
arbitrary typical case with parameters u = 0.5 and θr = 0.4, giving
〈ψ∞|N|ψ∞〉 = 6.21. (c) Convergence rate λconv as a function of θr

for u = 0.1 (dotted curve) and u = 1 (dashed curve). Dependency in
u is small. We also represent (full curve) the analytic result of the
simplified model [Eq. (19)]. This model slightly overestimates the
convergence speed.

We have numerically examined the fidelity F = |〈ψ∞|α∗〉|2
of the pointer state |ψ∞〉 defined by Eq. (16) with respect
to a coherent state |α∗〉 of the same mean photon number
|α∗|2 = 〈ψ∞|N|ψ∞〉. Figure 4(a) represents this mean photon
number in grayscale as a function of u and θr . We limit the
plot to θr < (2π )/

√
nmax ≈ 0.88 to avoid trapping states, and

to θr > 5 tan(u/2)/
√

nmax to remain in the truncated Hilbert
space (top left corner cutoff). The coherent state approximation
for |ψ∞〉 remarkably holds for a range of u and θr much wider
than that predictable from the qualitative discussion above. We
find a fidelity F larger than 99% over the whole shaded area
in Fig. 4(a).
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Convergence toward |α∞〉 can be simply analyzed in the
limit of small u, θr . Expansion of Eq. (14) to second order in
u and θr

N yields the Kraus map

ρk+1 ≈ ρk + uθr

4
([a†,ρk] − [a,ρk])

− θ2
r

8
(Nρk + ρkN − 2aρka†). (17)

We define ρ̃ = D−α∞ρDα∞ , such that ρ = |α∞〉〈α∞| corre-
sponds to ρ̃ = |0〉〈0|. A few calculations show that Eq. (17) is
equivalent to

ρ̃k+1 = ρ̃k − θ2
r

8
(Nρ̃k + ρ̃kN − 2aρ̃ka†). (18)

This is a finite difference version of the standard Lindblad
equation describing the damping of a harmonic oscillator
coupled to a zero-temperature bath. It drives any initial
state toward the vacuum ρ̃ = |0〉〈0|, with a relaxation rate
proportional to θ2

r . This analogy shows that the initial Kraus
map [Eq. (17)] drives any initial cavity state toward the
coherent state ρ = |α∞〉〈α∞|, with α∞ = 2u/θr . A smaller
θr value (i.e., a shorter interaction time of each atom with the
field) leads to a higher-energy pointer state (for a given u), but
to a lower convergence rate (independent of u).

An alternative line of reasoning directly considers Eq. (17),
but assumes that the field always remains in a coherent state.
In a second-order approximation of Eq. (17) in u, θr [37], the
amplitude αk of this coherent state evolves as

αk+1 = (
1 − θ2

r /8
)
αk + uθr/4. (19)

This first-order system has the explicit solution αk = (1 −
θ2
r /8)k(α0 − α∞) + α∞ starting from α0 at k = 0. Not-

ing that ln |〈α∞|αk〉|2 = −|αk − α∞|2, the fidelity indica-
tor ln | ln |〈α∞|αk〉|2| = ln |α0 − α∞|2 − λconvk decreases lin-
early in k toward −∞, with a slope λconv = 2| ln(1 − θ2

r /8)|.
This slope measures the exponential convergence rate of
|αk − α∞|2, which increases with θr and is independent of
u.

Numerical simulations of Eq. (6) with the exact Kraus map
[Eq. (14)] vindicate this approximate analysis. Figure 4(b)
shows the evolution of ln | ln〈ψ∞|ρk|ψ∞〉| as a function of the
number of atom-field interactions k, starting from the vacuum
ρ0 = |0〉〈0|, with the real Kraus map associated with Ur . The
evolution is linear, as predicted by the simplified model. We
have checked that this linearity holds for a large range of
parameter values. This allows us to characterize convergence
speed by the slope λconv of that approximate evolution.
Figure 4(c) shows the dependence of λconv in θr for two
different u values: u = 0.1 (dotted curve) and u = 1 [dashed
curve, which does not extend to low θr , according to the
accessible domain on Fig. 4(a)]. They closely follow the
simplified model (full line), which is independent of u and
slightly overestimates convergence speed.

IV. KERR HAMILTONIAN SIMULATION
IN DISPERSIVE REGIME

We now discuss the case of a full composite interaction
with the detuning profile δ(t) represented in Fig. 3. The full

propagator

UT = Ud2 UrUd1 (20)

is the concatenation of three unitary operators corresponding
first to a nonresonant interaction with parameters d1 =
(−T/2, − tr/2, v, δ0) as the atom enters the cavity, then
to a resonant interaction around cavity center with q = r

(see previous section), and finally to a second nonresonant
interaction with d2 = (tr/2, T /2, v, − δ0) as the atom leaves
the cavity. The exact expression of Ur is given by Eq. (12).
The propagators Ud1 and Ud2 are computed in Appendix A,
assuming that δ0 and v satisfy the adiabatic approximation
condition [Eq. (A1)].

To get a simple insight into the physics of nonclassical
states stabilization, the present section focuses (like Ref. [31])
on the simple case in which the two nonresonant interactions
take place in the dispersive regime (i.e., δ0 
 �0). This
avoids considering spurious population transfers during the
nonresonant interactions, as atomic levels dressed by the cavity
field almost coincide with the bare levels |e〉 and |g〉. The
dispersive propagators, deduced from Eq. (A7) in Appendix A,
are then written as

Ud1 ≈ U†
d2

≈ Z
(
φd

N

)
, with φd

N = φγ N + φζ , (21)

where φγ = 1/(2δ0)
∫ −tr /2
−T/2 �2(vt)dt is a phase shift per photon

and φζ = δ0(T − tr )/2 reflects the free atom evolution in the
interaction representation at cavity frequency.

The full propagator is then written as

UT ≈ Ud = Z
( − φd

N

)
UrZ

(
φd

N

)
= |g〉〈g| cos θr

N/2 + |e〉〈e| cos θr
N+I/2

− |e〉〈g|a sin θr
N/2√
N

ei(φγ N+φζ )

+ |g〉〈e| sin θr
N/2√
N

e−i(φγ N+φζ )a†, (22)

where θr
N is defined by Eq. (13). The two opposite dispersive

interactions have no net effect on the terms in which the atom
remains in the same state during the resonant interaction Ur .
In contrast, for the terms in which the atomic level changes
during the resonant interaction, the dispersive phase shifts add
up, as Z does not commute with Ur . The global evolution
thus associates a phase shift to each term of Ur that changes
the field energy. An increasing field energy corresponds to a
decrease of the field phase and vice versa. These correlated
phase and amplitude shifts suggest that Ud might stabilize a
coherent state distorted by amplitude-dependent phase shifts,
similar to the result of the propagation through a Kerr medium.

It turns out that the dispersive interaction can indeed be
expressed by an operator acting on the field only. Let us define
the Hermitian operator hd

N by

hd
N = φγ (N2 + N)/2 + φζ N. (23)

Thanks to the commutation identity [Eq. (7)] we have
e−ihd

N aeihd
N = aei(φγ N+φζ ) and

Ud = e−ihd
N Ure

ihd
N . (24)

Thus, Ud is equivalent to Ur modulo a basis change on field
state alone defined by the unitary operator e−ihd

N .
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In other words, as ρ evolves under the Kraus map associated
with (MUd

g ,MUd
e ) then ρh = eihd

Nρe−ihd
N evolves under the

Kraus map associated with (MUr
g ,MUr

e ). It follows from Sec. III
that ρh converges toward a coherent pointer state |α∞〉.
Therefore, ρ converges with the same convergence rate toward
a nonclassical pointer state exp[−ihd

N]|α∞〉.
The effective Hamiltonian hd

N/tK is equal to the Kerr Hamil-
tonian HK , with γKtK = φγ /2 and ζKtK = (φζ + φγ /2). The
engineered reservoir thus stabilizes the nonclassical pointer
states e−itK HK |α∞〉 which would be produced by propagation
through a Kerr medium (see Fig. 1). Tuning of T and δ0 allows
us to choose φγ at will. We can thus prepare and stabilize
a whole class of states as described in Sec. I. In particular,
for φγ = π , we get the MFSS |cα̃∞〉 = (|α̃∞〉 + i|−α̃∞〉)/√2
with α̃∞ = e−i(φζ +π/2)α∞. Note that the stabilization of this
two-component MFSS is the most demanding, in the sense
that it requires the longest dispersive interaction time.

Our analysis so far considers the limit of small �/δ0.
Reaching notable φγ in this case requires a large disper-
sive interaction time (T − tr )/2. This requirement can be
prohibitive for several reasons. First, in the experimental
context of Fig. 2, the minimal achievable atomic velocity
(a few tens of m/s in the ENS setup) limits the maximal
accessible values of T = 3w/v. Second, a larger T means less
frequent atom-field interactions and thus a weaker reservoir,
implying a less efficient protection of the target state against
decoherence induced by cavity relaxation. The next section
therefore discusses nonresonant interaction with moderate
�/δ0 values, which allows us to reach significant dispersive
effects within moderate interaction times.

V. REGIME OF ARBITRARY DETUNING

For moderate �/δ0 values, we must use a more precise
expression of the propagator for the nonresonant interactions
(parameter sets d1 and d2), by applying the adiabatic approx-
imation to the actual dressed states (instead of |g,n + 1〉 and
|e,n〉 as in Eq. (21) when assuming δ0 
 �0). Developments
detailed in Appendix A lead to

UT ≈ Uc = Z(−φN)X(ξN)Y
(
θr

N

)
X(ξN)Z(φN), (25)

with

φn = δ0

∫ −tr /2

−T/2

√
1 + n[�(vt)/δ0]2dt, (26)

tan ξn = �(vtr/2)
√

n

δ0
, with ξn ∈

(−π

2
,
π

2

)
. (27)

We recognize in this expression the central resonant inter-
action evolution operator, Y(θr

N) and the two phase-shifts
accumulated during the nonresonant interactions [Z(−φN) and
Z(φN)]. Note that here, unlike in Sec. IV, φn is a nonlinear
function of n. The two remaining operators, X(ξN), reflect
the fact that the atomic energy eigenstates do not coincide
with the dressed levels at ±tr/2, when the atomic transition
frequency is suddenly switched. Note that we neglect two
similar transformations which appear in principle when the
atom gets first coupled to the mode and finally decoupled
from it, since the atom-field coupling is then quite negligible.

Some tedious but simple computations exploiting Eq. (7)
allow us to write

Uc = |g〉〈g| cos
(
θc

N/2
) + |e〉〈e| cos

(
θc

N+I/2
)

− |e〉〈g|a sin
(
θc

N/2
)

√
N

eiφc
N + |g〉〈e| sin

(
θc

N/2
)

√
N

e−iφc
N a†.

(28)

Here, θc
n ∈ [0,2π ) is defined by

cos
(
θc
n/2

) = cos
(
θr
n/2

)
cos ξn. (29)

Introducing [38]

χc
n = angle

[
sin

(
θr
n/2

) − i cos
(
θr
n/2

)
sin ξn

]
, (30)

we define the composite phase as φc
N = φN + χc

N.
Comparing Eqs. (28) and (22), we finally get

Uc = Z
( − φc

N

)
Y

(
θc

N

)
Z

(
φc

N

)
. (31)

This expression of Uc has the same general form as that used
in the dispersive case (Sec. IV). Angles θc

N, φc
N replace θr

N, φd
N,

respectively. We now show that, with these adaptations, most of
the conclusions of the previous sections still hold. In particular,
each nonclassical state of the form |ψ〉 ≈ e−itK HK |α〉 can
indeed be stabilized by a realistic reservoir.

A. Effects of Y(θ c
N) and Z(±φc

N)

Let us first consider a reservoir of atoms whose interaction
with the cavity would be described by a propagator Y(θc

N).
Note that this situation is not physical: the Y(θc

N) evolution
operator is no more than a convenient mathematical factor
appearing in the expression of the complete evolution operator
Uc.

In analogy with Sec. III, the pointer state |ψ∞〉 = ∑
ψn|n〉

corresponding to this fictitious interaction is defined by the
recurrence relation

ψn+1 = tan(u/2)

tan
(
θc
n+1/4

)ψn, (32)

for n = 0,1,2, . . .. Equation (29) ensures | cos(θc
n+1/2)| < 1

∀ n, therefore 0 < θc
n+1/4 < π/2. Moreover, limn�→+∞ θc

n =
π , such that Eq. (32) always defines a unique (normalized)
finite-energy state as soon as |tan(u/2)| < 1 (i.e., |u| < π/2).
Indeed, for large n, Eq. (32) can be approximated by ψn+1 =
tan u

2 ψn, showing that ψn exponentially converges toward 0
and that

∑
n nψ2

n is finite. The energy exchange resulting from
the fast commutation of the atomic frequency near the cavity
center thus removes the possibility of trapping states.

Note that even in the absence of the central resonant
interaction, with θr

n = 0 in Eq. (29), relation (32) defines a
unique pointer state with finite energy. It is thus in principle
possible to simplify our scheme by using only two dispersive
interactions with opposite detuning.

For θr and �r/δ0 small, we get 2 tan(θc
n/4) ≈ θc

n/2 ≈
θc

√
n/2 with θc = [θ2

r + (2�r/δ0)2]1/2. The pointer state is
thus close to a coherent state |α∞〉, as in Sec. III, with
the modified amplitude α∞ = 4 tan(u/2)/θc. Convergence
arguments similar to those of Sec. III (effective Lindblad
master equation) can be given. The convergence rate is now
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FIG. 5. Mean photon number 〈ψ∞|N|ψ∞〉 of pointer state |ψ∞〉
stabilized by Y(θc

N), with δ0 = 2.2�r (a) and δ0 = 10�r (b). The
grayscale axis is linear in

√〈ψ∞|N|ψ∞〉. The 2-component MFSS
in Fig. 1 corresponds to u = 0.9π/2 and θr = π/2 with δ0 = 2.2�r

[black dot on (a)], for which 〈ψ∞|N|ψ∞〉 = 2.96. The shaded zone
is delimited such that all states have at least 99% fidelity |〈ψ∞|α∗〉|2
to a coherent state |α∗〉 of the same mean photon number (|α∗|2 =
〈ψ∞|N|ψ∞〉).

proportional to θ2
c . We conjecture that this convergence is valid

for any u with 0 � u < π/2, θr � 0, �r > 0, and δ0 > 0.
Figure 5 presents numerical estimations of the field pointer

state |ψ∞〉 stabilized by a hypothetical reservoir using interac-
tion Y(θc

N). All parameter values in the shaded areas lead to at
least 99% fidelity |〈ψ∞|α∗〉|2 with respect to a coherent state
|α∗〉 of the same mean photon number (|α∗|2 = 〈ψ∞|N|ψ∞〉).
This mean photon number is represented as a function of
parameter values in grayscale and level curves. The smaller
parameter value �r/δ0 = 1/10 chosen for Fig. 5(b) allows
us to reach higher mean photon numbers than the larger
�r/δ0 = 1/2.2 of Fig. 5(a). A reservoir with small �r/δ0

however is also more subject to undesired population of
high-number Fock states, reminiscent of the trapping states, for
large θr and u. This explains the smaller domain where fidelity
is larger than 99% on Fig. 5(b). The particular parameter values
used for Fig. 1(e) [black dot on Fig. 5(a), with �r/δ0 = 1/2.2,
θ = π/2, and u = 0.45π ] yield a fidelity of almost 99.9%
with respect to a coherent state and a mean photon number
〈ψ∞|N|ψ∞〉 = 2.96.

We now examine the influence of the Z(±φc
N) operators

on the pointer state defined by Y(θc
N). A first observation is

that it does not modify the photon number populations, since
it commutes with N. Thus, the energy of the field pointer
state, for a reservoir with composite interaction, is entirely
determined by Y(θc

N), as represented for example on Fig. 5.
Let us define the Hermitian operator hc

N by the recurrence
relation

hc
n+1 − hc

n = φc
n+1, (33)

for n = 0,1,2, . . ., with an arbitrary hc
0. Using Eq. (7) as in

Sec. IV yields

Uc = e−ihc
N Y

(
θc

N

)
eihc

N . (34)

The pointer states of Uc are thus obtained by applying the
unitary transformation e−ihc

N to the pointer states of Y(θc
N).

The choice of hc
0 for solving Eq. (33) is physically irrelevant,

as it corresponds to a global phase factor that cancels out in
Eq. (34). The operator hc

N here exactly plays the role of hd
N

in Sec. IV. The only difference is that, as φc
n is nonlinear,

hc
n is defined through the discrete integral (33). If φc

n is
nearly linear in n over the relevant photon numbers [dominant
photon numbers in the pointer state |ψ∞〉 associated with
Y(θc

N)], then hc
n is nearly quadratic. The situation of Sec. V is

recovered: the reservoir stabilizes nonclassical pointer states
|ψc

∞〉 = e−ihc
N |ψ∞〉 ≈ e−itK HK |α〉 with tK depending on the

parameters governing φc
n.

B. Choice of reservoir operating point

We now use the detailed description of the reservoir to
justify the choice of operating parameters for generating the
two-component MFSS presented in Fig. 1(e): u = 0.45π ,
θr = π/2, v = 70 m/s, and δ = 2.2�0. Note that the state
in Fig. 1(e) with ≈2.7 photons on the average has been
computed with a finite cavity lifetime Tc = 65 ms and a
random (zero or one) atom number in each atomic sample. The
same computation leads to an average photon number equal to
2.96 in an ideal cavity (see Fig. 5). The two-component MFSS
requires the largest effect from the dispersive interactions,
and hence corresponds to the most demanding experimental
conditions.

The chosen parameters are the result of a tradeoff between
contradictory requirements. First, the composite phase shift
φc

n must be nearly linear in n over the useful photon number
range, with a slope of π per photon. Second, the time of
convergence toward the steady state needs to be much shorter
than its expected decoherence time (Tc/5.6) associated with
cavity relaxation. Linearity of φc

n improves with larger δ0/�r .
But achieving a phase shift of π per photon then requires a
longer atom-cavity interaction time, which is detrimental for
the second requirement.

The tradeoff is further examined in Fig. 6. Figure 6(a)
evaluates the linearity of φc

n by showing Dφc
n = φc

n+1 − φc
n =

hc
n+1 + hc

n−1 − 2hc
n for different parameter values. The value

of θr has little influence and we set it to π/2. For each value
of �r/δ0, we adjust v to have Dφc

n = π for the same mean
photon number n = 2.96 (by linear interpolation). This value is
chosen to match the parameter values of Fig. 1(e), represented
by a black dot on Figs. 5 and 6. As expected, Dφc

n is quite
constant for moderate photon numbers in the dispersive region
δ0/�r 
 1. This corresponds, however, to prohibitively small
atomic velocities, represented on Fig. 6(b). In the region of low
δ0/�r , one can reach Dφc

n ≈ π at n = 2.96 with larger v, but
Dφc

n varies more rapidly with n. This variation is nevertheless
sufficiently weak in the range 2 � n � 5 for δ0/�r ≈ 2.2,
corresponding to the velocity v = 70 m/s that is used for
Fig. 1(e).

Let us now examine the overall reservoir fidelity and the
convergence rate λconv from the vacuum toward the target state,
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FIG. 6. (a) Kerr-effect-inducing Dφc
n = φc

n+1 − φc
n as a function

of photon number n and δ0/�r . Since φc
0 is undefined, we start with

Dφc
1. (b) Corresponding velocities v: for each δ0/�r , we adjust v

to have Dφc
n = π at n = 2.96. This value is chosen to cover the

parameter values v = 70 m/s, δ0/�r = 1/2.2 (black dots) used
for the 2-component MFSS in Fig. 1. An ideal hc

n, proportional
to HK , requires Dφc

n to be constant in n. Small δ0/�r values are
disadvantageous for this criterion, but makes it possible to use higher
velocities and hence more frequent reservoir atoms for a same mean
Dφc. We have selected a constant value θr = π/2 for this figure.

as already defined in Fig. 4. We analyze their dependency on
the parameters θr and δ0/�r . For each value of θr and δ0/�r ,
we set v to the unique value which corresponds to a |ψc

∞〉 of the
form |cα〉 [see Fig. 6(b)]. Then u is adjusted so that the target
mean photon number is 2.96 [see Fig. 5(a)]. Figure 7(a) shows
the ratio λconv/T , where T is the total interaction time of each
atom with the cavity. This ratio characterizes the convergence
rate in s−1 units. The fidelity with respect to an ideal MFSS
with the same mean photon number 2.96 is shown in Fig. 7(b).
The black dot represents the parameter values δ0/�r = 2.2
and θr = π/2 chosen for Fig. 1(e). They do not correspond
to a maximum fidelity, because the relatively small value of
δ0/�r induces significant variation of Dφc

n in the useful n

value range [see Fig. 6(a)]. However, for a still-excellent 95%
fidelity, the associated convergence rate (1400 s−1) is high
and the reservoir competes efficiently with decoherence whose
expected time scale is of order of 65/5.6 ≈ 10 ms (see next
section). Figure 8 shows the Wigner functions (left) of the
steady-state MFSS obtained with this parameter choice and
(right) of a theoretical superposition of two coherent states
with opposite phases and the same total energy. The slight
distortions of the quasicoherent components in the pointer
state MFSS are due to the nonlinearity of the phase shift φc

n.

VI. DECOHERENCE AND EXPERIMENTAL
IMPERFECTIONS

The above choice of operating parameters has been based
on a rough estimate of the action of decoherence. We now
explicitly show how the reservoir allows us to stabilize a
mesoscopic field state superposition with a high fidelity, in
the presence of cavity relaxation into a zero-temperature
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FIG. 7. (a) Convergence rate λconv/T giving slope, in inverse time
units (s−1), of the convergence toward the reservoir pointer state |ψc

∞〉,
according to ln | ln〈ψc

∞|ρk|ψc
∞〉| = ln | ln〈ψc

∞|ρ0|ψc
∞〉| − λconvk (see

Fig. 4). For each θr and �r/δ0, we adjust v as in Fig. 6 to keep
Dφc

n ≈ π and u to keep 〈ψc
∞|N|ψc

∞〉 = 2.96. The choice of these
reference values corresponds to θr = π/2, u = 0.45π , �r/δ0 = 2.2,
v = 70 m/s (black dot) used for Fig. 1(e). Time T = 3w/v between
consecutive atoms changes as we adjust v. (b) Fidelity of the same
|ψc

∞〉 to a 2-component MFSS |c′
α∞〉 = (|α∞〉 + ieiβ |−α∞〉)/√2,

where we tune α∞ and 0 � β < π to optimize fidelity. It turns out
that |β| < 0.005 for most parameter values, while |α∞|2 decreases
as fidelity decreases, below 2.7 for the lowest values of �r/δ0. The
black dot marks the settings for the 2-component MFSS in Fig. 1. For
θr values larger than those represented, there is no u value stabilizing
a mean photon number 2.96; see also Fig. 5. The two plots together
illustrate a tradeoff between fidelity in absence of decoherence and
convergence speed.

environment (Sec. VI A). In Sec. VI B we study the robustness
of the scheme against other experimental imperfections by
numerical simulations.

A. Cavity relaxation

We first analyze the field evolution with a simplified model.
The simplified model without relaxation is obtained from
equation (19) for the coherent state evolution, sandwiched
between two dispersive transformations [Eq. (21)]:

αk+1 = (
1 − θ2

r /8
)
αk + uθr/4,

(35)
ρ ′h

k = |αk〉〈αk|, ρ ′
k = e−iπ/2N2

ρ ′h
k eiπ/2N2

.

In a Monte Carlo approach, the evolution of the field density
matrix due to cavity relaxation can be represented as a
succession of quantum jumps described by the annihilation
operator a, occurring at random times and interrupting a
nonunitary deterministic evolution close to Eq. (35) [39].

The action of a on an MFSS |cα〉 is written as

a|cα〉 ∝ |c−α〉.
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FIG. 8. (Color) Wigner functions W (γ ) illustrating a stabilized
2-component MFSS (colorbar as in Fig. 1). Left panel shows ρ =
|ψc

∞〉〈ψc
∞| which is the pointer state of our reservoir with composite

interaction. Parameter values are θr = π/2, u = 0.45π , δ0 = 2.2�0,
v = 70 m/s [i.e., those used for Fig. 1(e), except Tc set to infinity
here]. Right panel shows target state ρ = |cα〉〈cα|.

This loss of photons in the environment cannot be detected.
Therefore, in the absence of the reservoir, an initial state |cα〉
would rapidly evolve into a statistical mixture of |cα〉 and
|c−α〉 (i.e., into a mixture of |α〉 and |−α〉). The purpose of
the reservoir is to drive |c−α〉 back to |cα〉 after each jump. If
the reservoir-induced convergence time is much shorter than
the average interval between two jumps, then the field is mostly
close to |cα〉.

This simple description suggests that we seek a steady state
of the field evolution, driven by the engineered reservoir and
the cavity relaxation, in the form ρ ′h

∞ = ∫
μ(z)|z〉〈z|dz. This is

a statistical mixture of coherent states |z〉 with a real amplitude
z weighted by μ(z).

In the absence of cavity relaxation, the evolution of ρ ′h
k

in the simplified model [Eq. (35)] can also be viewed as a
discretization of the Lindblad master equation:

d

dt
ρ ′h = [βa† −β†a,ρ ′h] − κ

2
(Nρ ′h + ρ ′hN − 2aρ ′ha†), (36)

with βdt = uθr/4 and κdt = θ2
r /4. An equation of the same

form as Eq. (36) also describes the evolution of a field mode
coupled with a classical source of amplitude β and damped at
a rate κ . In these conditions, ρ ′h converges toward a coherent
state |α∞〉 with α∞ = 2β/κ (see, e.g., [4]). Note that in the
situation described by Eq. (36), the damping rate κ is induced
by the atomic reservoir and not by cavity relaxation. As ρ ′h

follows (36), ρ ′ = e−iπ/2N2
ρ ′heiπ/2N2

evolves according to

d

dt
ρ ′ = β[a†e−iπN − eiπNa,ρ ′]

−κ

2
(Nρ ′ + ρ ′N − 2eiπNaρ ′a†e−iπN),

where we can assume, up to a phase reference choice, that β

is real and positive.
It is now straightforward to add, to this simplified

continuous-time model, the usual Lindblad terms which de-
scribe the action of a thermal environment at zero temperature,
inducing decoherence of the field with a finite cavity lifetime

Tc = 1/κc:

d

dt
ρ ′ = β[a†e−iπN − eiπNa,ρ ′]

− κ

2
(Nρ ′ + ρ ′N − 2eiπNaρ ′a†e−iπN)

− κc

2
(Nρ ′ + ρ ′N − 2aρ ′a†). (37)

The associated ρ ′h in the Kerr representation then evolves
according to

d

dt
ρ ′h = β[a† − a,ρ ′h] − κ + κc

2
(Nρ ′h + ρ ′hN − 2aρ ′ha†)

− κc(aρ ′ha† − eiπNaρ ′ha†e−iπN). (38)

Without the terms in the second line, Eq. (38) would be
identical to Eq. (36) with κ replaced by κ + κc. This would
simply drive ρ ′h to a coherent steady state of reduced amplitude
αc

∞ = α∞/(1 + η) with η = 4T/(θ2
r Tc). We then observe

that the whole equation (39) leaves invariant the set of all
mixtures of coherent states with real amplitudes in [−αc

∞,αc
∞].

Therefore, we search for a steady state of Eq. (39) under the
form

ρ ′h
∞ =

∫ αc
∞

−αc∞
μ(z)|z〉〈z|dz. (39)

As explained in Appendix B, this yields a solution

μ(z) = μ0

{[(
αc

∞
)2 − z2

](αc
∞)2

ez2}rc

αc∞ − z
, (40)

with rc = 2κc/(κ + κc). The normalization factor μ0 > 0
ensures that

∫ αc
∞

−αc∞
μ(z)dz = 1. In any case, μ(−αc

∞) = 0. For

small κc, we have limz �→αc∞ μ(z) = +∞ and ρ ′h
∞ is close to the

coherent state |αc
∞〉. For large κc, αc

∞ is anyway close to zero
and the field steady state comes close to the vacuum.

We now compare this simplified model to the actual
reservoir in the presence of relaxation. Figure 9 illustrates
the reservoir-induced convergence after a quantum jump. The
leftmost column shows the Wigner function of ρ ′, evolving
under the simplified model (35). Starting at |cα〉 (upper-
left frame), we assume that a decoherence-induced jump
immediately takes the state to |c−α〉 (second frame in the
leftmost column). The successive snapshots on the next frames
illustrate how the state gradually converges back toward |cα〉
under the dynamics described by Eq. (35). We neglect here the
action of cavity relaxation during this recovery process. Note
that after ≈4 reservoir atoms, a vacuum state is reached, from
which |cα〉 is gradually recovered.

The second column depicts the evolution of ρ ′h. In this
representation, the initial state is the coherent state |α〉 (first
frame). It jumps to |−α〉 (second frame), and then gradually
evolves back toward |α〉 according to Eq. (19), staying coherent
at all times.

On the third column, we show the Wigner functions of the
actual cavity state ρ induced by our reservoir, whose dynamics
is governed by the Kraus map associated with Uc. The last
column shows the evolution of ρh = eihc

Nρe−ihc
N . We observe

that ρh and ρ ′h follow qualitatively the same path. Our analysis
on the simplified model thus seems to describe the actual cavity
state evolution in the presence of relaxation reasonably well.
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FIG. 9. (Color) Evolution of the cavity field coupled to a reservoir
stabilizing a 2-component MFSS, immediately after a relaxation-
induced photon loss. We use the same parameter values as for Fig. 8.
A photon loss out of the reservoir pointer state occurs between the
frames labeled 0− and 0+. The other frames are labeled by the number
of atomic interactions, that have taken place after the photon loss, with
no further relaxation. Left two columns: simplified model, described
by Eq. (35). We show the Wigner functions of the cavity state, ρ ′, on
column 1 and of ρ ′h on column 2. Right two columns: same plots for
the actual reservoir characterized by Uc (ρ on column 3 and ρh on
column 4).

The main difference is a notable distortion of ρh when the field
amplitude is near zero.

We can further examine the steady states ρ ′
∞ and ρ∞

of the (simplified and actual) reservoirs in the presence of
relaxation, which approximately correspond to the quantum
Monte Carlo average of the trajectories depicted in Fig. 9.
Figure 10 shows the marginal distributions, along the real and
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FIG. 10. Steady state of cavity field coupled to atomic reservoir
and to relaxation-inducing environment with Tc = 65 ms. Top
(bottom) panel shows marginal distribution of the Wigner function
along the imaginary (real) quadrature for the simplified model ρ ′h

∞
(dashed line) and for our reservoir ρh

∞ (solid line). These states
approximately correspond to the quantum Monte Carlo average of
the sequence presented in Fig. 9.

imaginary quadratures, of the Wigner functions for ρ ′h
∞ and

ρh
∞. They feature dominant peaks which suggest that the field

is mostly close to the target. The distortions with respect to
a coherent state visible on the fourth column of Fig. 9 lead
to a plateau or bump on the marginal distributions of ρh

∞.
We nevertheless observe that our simplified model [Eq. (38)]
captures the main features of the influence of decoherence.

B. Experimental uncertainties

We performed extensive numerical simulations to assess
the robustness of the reservoir toward uncertainties in the
experimental setup. For these simulations, the evolution op-
erators associated with the reservoir are computed by exactly
integrating the Hamiltonian HJC [Eq. (3)], using the quantum
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optics package for MATLAB [40]. The Hilbert space is truncated
to the 60 first Fock states. We separately take into account the
atom-cavity coupling ruled by HJC and the relaxation of the
cavity mode, modeled in the standard Lindblad form. This
simplification holds since T � Tc.

We use as a reference the generation of a two-component
MFSS containing 2.7 photons on average [thermal envi-
ronment with Tc = 65 ms and a mean number nt = 0.05
of blackbody photons per mode, δ = 2.2�0, v = 70 m/s,
u = 0,45π , tr = 5 μs; see Fig. 1(e)]. We also take into account
the randomness of the Rydberg state preparation [31]. In fact,
assuming that precisely one atom interacts with the field at
each iteration is an unrealistic simplification for the ENS
experiment. Instead, we can only prepare atomic samples
with a random number of atoms, obeying a Poisson law of
average pat . We select a low value pat = 0.3 such that, in
a first approximation, we only get samples containing either
no atom or exactly one (we examine later in this section the
influence of samples containing two atoms). Note that these
are the conditions used for Fig. 1(e). For this reference set of
parameters, the steady-state fidelity with respect to an ideal
optimized two-component MFSS is 70%. We now examine
how this fidelity is affected by various small variations in the
experimental setting.

We have first checked that the atomic velocity dispersion
expected in the experiment—which is well below 10%—has
nearly no effect on the fidelity. Indeed, for v varying between
66 and 74 m/s, the fidelity remains within 65% to 70%.

The fidelity is also quite insensitive to a slight mismatch in
the values of the detuning for the two dispersive interactions.
Assuming that δ takes the value a1 × 2.2�0 in the first
dispersive period and −a2 × 2.2�0 in the second, the fidelity
drops by at most 10% when a1 and a2 vary by up to ±10%. This
range of parameters covers far more than the actual uncertainty
on the atomic frequency.

Imprecisions in the timing of the detuning profile are
expected to have similar effects. In fact, we observe that
shifting the resonant interaction in time by up to 1 μs (well
above the experimental 10 ns timing accuracy) affects the
fidelity by less than 1%. The finite rise time for the voltage
controlling the atomic Stark effect in the cavity also induces
a transient evolution of δ between the consecutive detuning
values. Using an exponential model for convergence to the
new δ value and adjusting tr to maintain a constant θr value,
we find that the fidelity is unchanged for commutation times
up to a realistic value of 200 ns.

We have also studied the effect of atomic samples contain-
ing two atoms at the same time. For a two-atom sample, we
integrate the exact equations of motion, assuming an identical
coupling of both atoms to the mode. This condition is realized
in the experiment, since the maximum separation between
the atoms in a sample is, below 1 mm in C, a value much
smaller than the wavelength—6 mm—or than the mode waist
w. We observe that the two-atom events do have an impact on
the fidelity. If we consider an unrealistic reservoir involving
samples always containing two atoms, we would get as a
steady state a large two-component cat, with 4.8 photons on
the average and a fidelity of 65%. In the real situation, this
two-atom engineered reservoir interferes destructively with
the operation of the one-atom samples.

We have therefore computed the expected steady-state
fidelity when the actual number of atoms Na in each sample is
randomly chosen according to a Poisson distribution with the
average value pat and truncated above Na = 2. For pat = 0.3,
the energy of the prepared cat decreases down to 2.4 photons on
the average and the fidelity is reduced to 66%. For larger pat

values, the decrease is more important: the fidelity reduces
to 34% for pat = 0.5 (for even larger pat , the simulation
should also include 3-atom samples). When we reduce pat

below 0.3, the fidelity and the energy also decrease, since
the reservoir is then less efficient to counteract decoherence.
For pat = 0.2 for instance, we get a 1.9 photons state with a
fidelity of only 54%. Optimizing the average number of atoms
per sample is thus important to achieve an efficient engineered
reservoir.

Note finally that the phase of the MFSS coherent com-
ponents is determined by the phase of the atomic state
superposition when the resonant interaction begins. Since the
atom is detuned from ωc during the dispersive interactions,
this phase rotates at the frequency δ0 during the time interval
−T/2 � t � −tr/2. The timing of the Stark shifts, which
govern the atom-field interactions, should thus define (T −
tr )/2 with an uncertainty much smaller than 1/δ0 to avoid
spurious rotations of this phase. With detuning values in the
100 kHz to few MHz range, the required timing accuracy is
easily achieved.

VII. RESERVOIR FOR TWO-MODE ENTANGLED
SUPERPOSITION OF MESOSCOPIC STATES

Our reservoir engineering strategy can be adapted to protect
entangled state superpositions of two cavity modes, which
violate a Bell inequality. The preparation of entangled states
of two cavity modes, without protection, has been considered
inRefs. [6,41]. An approximate reservoir for entangling large
atomic ensembles is proposed and realized in Ref. [26]. In ion
traps, reservoir engineering has recently been used to stabilize
a Bell state and a Greenberger-Horne-Zeilinger (GHZ) state
of four qubits [25].

We here present a scheme in which the two modes belong to
the same cavity [two transverse electromagnetic (TEM) modes
of orthogonal polarization, whose degeneracy is lifted by an
appropriate mirror shape]. Extension to two separate cavities
would require atoms going back and forth between the cavities,
a feat not easily achieved in the ENS experiment. We anticipate
that other experimental settings might overcome this obstacle.

A. Model and target

We consider two modes a and b of the cavity with respective
frequencies ωa < ωb and interacting with atomic qubits of
transition frequency ω0 ≈ ωa, ωb. We denote by a (by b) the
photon annihilation operator for mode a (mode b) and Na =
a†a (Nb = b†b) is the associated photon number operator. A
separable joint state of the two modes is written |ψa,ψb〉. We
describe the states in a frame rotating at the frequency ωm =
(ωa + ωb)/2, such that the free field evolution follows the
Hamiltonian Hf = �(Nb − Na) with � = (ωb − ωa)/2 > 0.
The Jaynes-Cummings Hamiltonian describing the interaction
of one atomic qubit with the modes is then written (with the
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standard approximations)

HJC = �(Nb − Na) + δ(t)

2
(|e〉〈e| − |g〉〈g|)

+ i
�(s)

2
[|g〉〈e|(a† + b†) − |e〉〈g|(a + b)], (41)

where δ(t) = ω0(t) − ωm can again be adjusted by controlling
ω0 through the Stark effect. Here, we assume that the coupling
�(s) is the same with both modes, a restriction that could
easily be relaxed.

We denote by U the unitary evolution operator associated
with HJC (the overline characterizes two-mode operators),
which is the solution of the Schrödinger equation:

d

dt
U(t) = −iHJC (t) U(t), with U(t0) = I. (42)

We denote by Uq the two-mode evolution operator corre-

sponding to the parameter set q, and (MUq

g ,MUq

e ) denotes the
associated Kraus operators. Approximate analytical expres-
sions of Uq for relevant parameter sets are given in Appendix
A. This appendix also formally defines operators Z and Y
that generalize the single-mode operators introduced in the
previous sections.

Let us first consider a situation where each atom, initially
prepared in |uat 〉 = cos(u/2)|g〉 + sin(u/2)|e〉, undergoes a
resonant interaction with mode b followed by a resonant
interaction with mode a. The corresponding propagator is
Ur = Y(θr

Na
)Y(θr

Nb
). The associated Kraus map (MUr

g ,MUr
e )

stabilizes a tensor product of two coherent states |−α,α〉,
where α = 2u/θr for sufficiently small u and θr .

The action of the Kerr-like Hamiltonian

HK = −γ K

[
(Na + Nb)2 + 2Na

]
for a time tK = π/(2γ K ) would transform an initial state
|−α,α〉 into

|cα〉 = (|α,α〉 − i|−α,−α〉)/
√

2. (43)

In the next section, we show that the action of HK can be
simulated by sandwiching the resonant interaction Ur between
two dispersive interactions. The corresponding reservoir thus
stabilizes |cα〉.

B. Composite interaction

The detuning profile δ(t) used to stabilize |cα〉 is represented
in Fig. 11 (bottom part). The atomic frequency is first set at
ωm (δ = 0), between t = −T/2 and t = −tr . This corresponds
to atoms that interact nonresonantly with both modes, the
detuning with respect to mode a being opposite to the detuning
with respect to mode b. We restrict our analysis to the
dispersive regime. The corresponding evolution operator is
Z(φ(Nb − Na)) (see Appendix A), describing opposite phase
shifts of the two modes driven by the atom, with a phase shift
φ per photon.

The atom is then successively set at resonance with modes
b and a for a time tr . During these short time intervals,
we neglect the residual dispersive interaction with the other
mode. A second dispersive interaction with the two modes
is performed by setting δ = 0 again from t = tr to t = T/2.
With this sequence, the phase shifts produced during the two

atom

mode a

mode b

π

D
et

un
in

g

− T
2

−tr 0 tr T
2

Δ

0

−Δ

Ω
0

− T
2

−tr 0 tr T
2Time

Δ

0

−Δ

Ω
0

0

C
ou

pl
in

g

FIG. 11. (Color online) Schematic timing of composite interac-
tion of atom with two cavity modes a and b at frequencies ωb > ωa .
Bottom frame, solid line is time profile of δ (difference between
the atomic frequency ω0 and the mean frequency ωm of the two
cavity modes) during cavity crossing by one atomic sample. For δ

values of 0, +�, and −�, ω0 coincides with ωm = (ωb + ωa)/2,
ωb, and ωa , respectively. The red dot represents a π pulse acting on
the atomic state. Bottom frame, dashed line shows coupling strength
�(vt), taking t = 0 when the atom is at cavity center. Top frame
shows scheme of propagators corresponding to successive steps in
the composite interaction.

dispersive interactions would add up in the |e〉〈e| term of Uq ,
as in its |g〉〈g| term. Instead, we want these phase shifts to
cancel out, like for the single-mode case. We therefore apply,
at t = tr , a π rotation on the atom alone that swaps its levels
|g〉 and |e〉. This rotation is driven by a classical source feeding
a microwave pulse of negligible duration through the interval
between the cavity mirrors. This pulse does not couple into the
cavity modes.

The phases of modes a and b evolve at the frequencies
±� with respect to a reference oscillator at the frequency
ωm. In order to cancel the buildup of these phases during
reservoir operation, we constrain the total time T between
successive interactions to satisfy T � = 0 modulo 2π . This
can be achieved by an appropriately timing of the Stark shifts.

The propagator is then written (dropping irrelevant rota-
tions; see Appendix A for a detailed calculation) as

UT ≈ U
eff
c̄ = Z(φ(Nb − Na))Y

(
θr

Na

)
× Y

(
θr

Nb

)
Z(φ(Na − Nb)). (44)
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By setting the dispersive interactions to produce a φ = π phase
shift per photon, we get

U
eff
c̄ = e−itK HK Y

(
θr

Na

)
Y

(
θr

Nb

)
eitK HK ,

with tKγ K = π/2. Given the observations in Sec. VII A and
by developments strictly analogous to the single-mode case,
the associated atomic reservoir thus stabilizes the entangled
pointer state |cα〉. Note that the detuning profile δ(t) can be
adapted to obtain the same propagator when the interaction
strength is not the same on both modes [42]. Generalization
to entangled states with more than two coherent components
in each mode is straightforward, using slightly more complex
detuning sequences. Indeed each dispersive effect must then be
implemented in two steps in order to induce identical instead
of opposite phase-shifts on the two modes.

C. Numerical simulations

We numerically solve Eq. (42) and iterate the corresponding
Kraus maps starting from the vacuum state. We select u =
π/4 and θr = π/2 such that the expected α is of order 1.
Decoherence is modeled by coupling each field mode with
a separate thermal environment; both environments have the
same damping time Tc and the same temperature (nt = 0.05).
The interaction strength �(s) of the atom with each mode
has the same Gaussian profile as in the single-mode case, with
�0/2π = 50 kHz. The computations are run on a Hilbert space
truncated to the 10 first Fock states for each field mode.

Figure 12 (solid line) shows the evolution of the fidelity
〈cα|ρ|cα〉 of the two-mode cavity state ρ with respect to an en-
tangled two-component MFSS |cα〉, starting from the vacuum.
We have chosen to illustrate the situation with � = 8�0, Tc =
650 ms. The atomic velocity is v = 22 m/s and each atomic
sample has a probability pat = 0.3 to contain one interacting
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FIG. 12. (Color online) Simulation of reservoir stabilizing a two-
mode entangled state. Solid line shows fidelity of ρ, the cavity state
starting at vacuum, with respect to an ideal optimized entangled state
of the two modes |cα〉, as a function of time in units of the sample
interaction time T . The reservoir operates up to t/T = 200 and is
then switched off. Dashed line shows maximum Bell signal Bmax

as a function of time. A Bmax value above the thin dash-dotted line
(Bmax = 2) proves entanglement of ρ.

FIG. 13. (Color) Cut in the plane [Re(γa) = Re(γb) = 0] of the
two-mode Wigner function W (γa,γb) of ρ200. The fringes and negative
values in W are a signature of the “quantumness” of the stabilized
state. The white dots show the points that maximize the Bell signal
(45).

atom (and a probability 0.7 to contain none; here, we neglect
samples eventually containing two atoms). The parameters of
the reference |cα〉, in particular |α|2 = 0.67, are numerically
optimized to maximize the fidelity with respect to the reservoir
stationary state (≈ρ200). The engineered reservoir is efficient,
since the optimal fidelity is ≈89%. This value is reached
after ≈30 samples, corresponding to only 10 atoms on the
average. To illustrate the protection of the state, we interrupt
the reservoir after 200 atomic samples. As shown in Fig. 12, the
fidelity with respect to the target state then rapidly decreases.

The entangled nature of the state produced by the reservoir
can be proven by showing that it violates a Bell inequality
adapted to this two-mode case [5,6]. The tested Bell signal is

B(γa,γb,γ
′
a,γ

′
b) = π2

4
|W (γ ′

a,γ
′
b) + W (γa,γ

′
b)

+W (γ ′
a,γb) − W (γa,γb)|, (45)

where W (γa,γb) is the two-mode Wigner function. The latter
is defined as

W (γa,γb) = 4

π2
Tr

(
Da

−γa
Db

−γb
ρDa

γa
Db

γb
P
)
,

where P = eiπ(Na+Nb) is a joint parity operator and Da
γa

and
Db

γb
are the coherent displacement operators for modes a and

b respectively. For separable states, compatible with a local
realistic model, B is always smaller than 2. A value larger
than 2 for a set of amplitudes (γa, γb, γ

′
a, γ

′
b) is a proof that ρ

features quantum entanglement.
Figure 13 shows a cut of the two-mode Wigner function

of ρ200 in the plane Re(γa) = Re(γb) = 0, in which maximum
violation of the Bell inequality is expected [5]. A numerical
maximization of the Bell signal B in this plane provides the
four amplitudes shown as white dots. We have performed
similar optimizations of B for each ρk and plotted the
maximum Bell signal Bmax as a dashed line in Fig. 12. It
reaches ≈2.1 > 2 which implies that the reservoir stabilizes a
provably entangled state of the modes. When the reservoir is
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FIG. 14. (Color online) Maximum Bell signal Bmax of ρ200 as a
function of cavity lifetime Tc, for �/(2π ) = 300 kHz, v = 30 m/s
(solid blue line); �/(2π ) = 400 kHz, v = 22 m/s (dashed-dotted
green line); �/(2π ) = 500 kHz, v = 18 m/s (dashed red line).

switched off after 200 interactions, decoherence causes a rapid
decrease of Bmax.

Figure 14 shows the maximum Bell signal Bmax of the
steady state as a function of Tc, for three detuning and atomic
velocity values. The Bell inequality is violated for all of these
settings when Tc > 450 ms. The crossing curves illustrates
a competition between two effects. For small Tc values, the
Bell signal is larger when � is smaller, since a smaller �

corresponds to a larger velocity and thus to more frequent
atomic samples, separated by T ≈ 3w/v. The reservoir thus
offers a stronger protection against decoherence when � is
small. For large Tc, cavity damping becomes negligible with
respect to the dispersive approximation error introduced in the
reservoir action. In this case, we must choose a large � value
in order to lower these approximation errors.

The Tc values required for a Bell inequality violation
are certainly difficult to reach, but they are only ≈3 times
larger than the best damping time reported so far [43]. The
stabilization of such field states may thus be within reach of
the next generation of experiments.

VIII. CONCLUDING REMARKS

We have proposed simple engineered reservoirs to stabilize
a wide variety of nonclassical field states in one and two cavity
modes. These reservoirs efficiently counteract the standard
relaxation of the cavities and offer promising perspectives for
studies and applications of mesoscopic field state superposi-
tions.

We have gained a detailed insight into the reservoir
mechanisms; in particular, how decoherence-induced quantum
jumps of the field are corrected. We have performed extensive
numerical simulations justifying the approximations used in
Ref. [31] and assessing the robustness of the method to
experimental imperfections.

We have discussed here, for the sake of definiteness, the
reservoir operation in the context of the microwave-CQED

experiments performed with circular Rydberg atoms and
superconducting cavities at ENS. We have shown that many
quantum states protected by our reservoir could realistically
be observed in this context. Clearly, the method could be
straightforwardly extended to other spin-spring systems, in
cavity QED and trapped-ions contexts. It is particularly
appealing for the thriving field of circuit QED [33]. Resettable
superconducting qubits [32] interacting with one or two cavity
modes could be used to implement our proposal. Making the
qubits interact with two spatially separated cavities, it would
become possible to stabilize a nonlocal entangled mesoscopic
superposition and to study the fascinating interplay between
decoherence and nonlocality.
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APPENDIX A: PROPAGATORS

This Appendix details the computation of the propagators
associated with the atom-cavity interaction for the various
settings used in the main text.

1. Single-mode case

For a resonant interaction [δ(t) = 0] between the field and
an atom of velocity v crossing the cavity axis at t = 0, Eq. (4)
is written as

d

dt
U(t) = �(s)

2
(|g〉〈e|a† − |e〉〈g|a)U(t),

with s = vt . This interaction induces a Rabi rotation at
an angular rate

√
n�(s) around the Y axis of each Bloch

sphere Bn associated with the invariant space spanned by
(|g,n + 1〉, |e,n〉). We therefore define the unitary operator
Y(fN) [Eq. (9)] performing rotations around all these Y axes
in parallel by angles f (n), where f (n) is an arbitrary function
of n. The resonant interaction propagator is then given by
Eq. (12).

For an interaction between t1 and t2 with constant nonzero
detuning δ(t) = δ �= 0 [44], the Gaussian variation of �(vt)
precludes an exact integration of Eq. (4). However, assuming
that �(vt) varies slowly enough, the coupled atom-field
system evolves adiabatically. An initial eigenstate of HJC(t1)
(a “dressed state”) then remains, for any time t , close to an
eigenstate of HJC(t) [4]. This adiabatic approximation is valid,
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provided∣∣∣∣ 2v

w�0
√

n + 1
se−s2

∣∣∣∣
�

(
δ

�0
√

n + 1

)2

+ e−2s2 ∀ s ∈
(

t1v

w
,

t2v

w

)
, (A1)

for all n in the relevant photon number range. This condition
merely expresses the requirement that the interaction Hamil-
tonian HJC varies slowly [through �(vt)] in comparison to the
differences between its eigenfrequencies.

The dressed states (| − ,n〉t ,| + ,n〉t ) that diagonalize the
part of HJC(t) acting on each Bn, for n = 1,2, . . ., satisfy

HJC(t)| ± ,n〉t = ± δ

2

√
1 + (n + 1)

(
�(vt)

δ

)2

| ± ,n〉t

and are written explicitly as

| − ,n〉t = cos
(
ξ (t)
n /2

)|g,n + 1〉 + i sin
(
ξ (t)
n /2

)|e,n〉,
(A2)

| + ,n〉t = i sin
(
ξ (t)
n /2

)|g,n + 1〉 + cos
(
ξ (t)
n /2

)|e,n〉,
where we define ξ (t)

n by

tan ξ (t)
n = �(vt/2)

√
n

δ
, with ξ (t)

n ∈
(−π

2
,
π

2

)
. (A3)

The propagator Uq corresponding to the parameter set q =
(t1, t2, v, δ) is then

Uq =
∑

n

| − ,n〉t2〈−,n|t1e
i
2 φ

q

n+1 + | + ,n〉t2〈+,n|t1e
−i
2 φ

q

n+1 ,

(A4)

where the accumulated phase φ
q
n is given by

φq
n = δ

∫ t2

t1

√
1 + n[�(vt)/δ]2dt (A5)

from a full adiabatic propagator computation.
The restriction of Uq on the Bloch sphere Bn can then be

written as

| − ,n〉t2〈−,n|t1e
i
2 φ

q

n+1 + | + ,n〉t2〈+,n|t1e
−i
2 φ

q

n+1

= (| − ,n〉t2〈g,n + 1| + | + ,n〉t2〈e,n|)
× (|g,n + 1〉〈g,n + 1|e i

2 φ
q

n+1 + |e,n〉〈e,n|e −i
2 φ

q

n+1
)

× (| − ,n〉t1〈g,n + 1| + | + ,n〉t1〈e,n|)†. (A6)

The transformation (| − ,n〉t 〈g,n + 1| + | + ,n〉t 〈e,n|) is a
rotation around the X axis of Bn by an angle −ξ

(t)
n+1. The trans-

formation (|g,n + 1〉〈g,n + 1|eiφ
q

n+1/2 + |e,n〉〈e,n|e−iφ
q

n+1/2) is
a rotation around the Z axis of Bn by an angle φ

q

n+1. We thus
introduce in Eqs. (8) and (10) the unitary operators X(fN) and
Z(fN) performing such rotations in parallel on all the Bloch
spheres Bn. Noting that X(−fN)† = X(fN), we can finally
write (A5) in the compact form

Uq = X
( − ξ

(t2)
N

)
Z

(
φ

q

N

)
X

(
ξ

(t1)
N

)
. (A7)

At the start and end of the complete composite interaction in
the main text, the atom-cavity coupling is weak: �2(±vT /2) =

�2
0/100. Then ξ

(±T/2)
N ≈ 0 and we can thus take as a good

approximation X(−ξ
(−T/2)
N ) = X(ξ (T/2)

N ) = I. This leads to
Eq. (25) in Sec. V.

In the large-detuning regime studied in Sec. IV, we can
even neglect all the X operators in Uq compared to the large
dispersive phase shift operator Z(φq

N).

2. Two-mode case

In the two-mode case, it is not possible to get an exact
expression for the dressed states. We therefore assume a large
detuning 2� between modes a and b. We restrict moreover
our analysis to two situations. First a (relatively short)
resonant interaction with one of the modes alone. Second,
a dispersive interaction with both modes. In the resonant
case, we neglect the residual dispersive interaction with the
other mode. For the nonresonant interaction, we use simple
first-order dispersive expressions. For both cases, simulations
explicitly integrating Eq. (42) confirm the validity of our
approximations.

We define the following operators on the joint Hilbert space
of the two field modes and the atom. For k ∈ {a,b}, Y(θq

Nk
) is

the tensor product of the single-mode operator Y(θq

Nk
) acting

on the system (atom, mode k), with the identity acting on the
other mode. A generalized two-mode phase rotation is given
by

Z(fNa ,Nb
) = |g〉〈g|e i

2 fNa ,Nb + |e〉〈e|e −i
2 f(Na+I),(Nb+I) , (A8)

where the operator fNa ,Nb
is diagonal in the joint Fock state ba-

sis of the two modes, with fNa ,Nb
|na,nb〉 = f (na,nb)|na,nb〉.

First consider the resonant case, with δ = ±�. A simple
adaptation of the single mode result leads to

Uq = e−i�(Nb−Na )(t2−t1)Z(�(t2 − t1))Y
(
θ

q

Nb

)
for q = (t1,t2,v,�), (A9)

Uq = e−i�(Nb−Na )(t2−t1)Z(�(t1 − t2))Y
(
θ

q

Na
)

for q = (t1,t2,v, − �), (A10)

where Z defined by Eq. (A8) is here used with a constant
argument fNa ,Nb

= ±�(t2 − t1).
Let us now consider the dispersive interaction used in the

main text, corresponding to δ = 0. Applying second-order
perturbation theory in �0/�, we get for q = (t1, t2, v, 0):

Uq = e−i�(Nb−Na )(t2−t1)Z(φ
q
(Nb − Na)), (A11)

with φ
q = 1

2�

∫ t2
t1

�2(vt)dt.

Using Eqs. (A9), (A10), and (A11) and the commutation
relation (7), we get an approximate evolution operator for the
sequence defined in Sec. VII, with T � = 0 modulo 2π :

UT ≈ U
eff
c̄ = UπZ(−�(T/2 + tr ))

× Z(φ(Nb − Na))Y
(
θr

Na

)
Y

(
θr

Nb

)
× Z(φ(Na − Nb))Z(−�(T/2 − tr )), (A12)
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where

φ = 1

2�

∫ −tr

−T/2
�2(vt)dt. (A13)

The first line in Eq. (A12) has no effect on the Kraus
map since it is a rotation on the atom only after it has
interacted with the modes. The rightmost (i.e., first in time)
operator Z(−�(T/2 − tr )) can be compensated by properly
setting the phase of the Ramsey pulse, preparing now each
atom in Z(�(T/2 − tr ))|uat 〉. These considerations lead to the
effective propagator given in Eq. (44).

APPENDIX B: EQUILIBRIUM OF RESERVOIR
WITH DAMPING

We look for a stationary solution ρ ′h
∞ to (38) under the form

(39). Then we have

0 =
∫ αc

∞

−αc∞
μ(z)

(
β − κ + κc

2
z

)
[(a† − z)|z〉〈z|

+ |z〉〈z|(a − z)]dz +
∫ αc

∞

−αc∞
κc [μ (−z) − μ (z)] z2|z〉〈z|dz

(using a|z〉 = z|z〉, eiπNa|z〉 = z|−z〉, and their Hermitian
conjugates). Multiplying on the left by coherent state 〈ξ | and

on the right by |ξ 〉, for any real ξ , yields

0 =
∫ αc

∞

−αc∞
2μ(z)

(
β − κ + κc

2
z

)
(ξ − z)e−(ξ−z)2

dz

+
∫ αc

∞

−αc∞
κcz

2[μ(−z) − μ(z)]e−(ξ−z)2
dz,

(recall that |〈ξ |z〉|2 = e−(ξ−z)2
, ξ and z being real). Applying

integration by parts to the first term yields

0 =
[
μ(z)

(
β − κ + κc

2
z

)
e−(ξ−z)2

]z=αc
∞

z=−αc∞

−
∫ αc

∞

−αc∞

{
d

dz

[
μ(z)

(
β − κ + κc

2
z

)]}
e−(ξ−z)2

dz

+
∫ αc

∞

−αc∞
κcz

2[μ(−z) − μ(z)]e−(ξ−z)2
dz = 0.

Since this holds for all real ξ , we get the condition

κcz
2[μ(−z) − μ(z)] − d

dz

[
μ(z)

(
β − κ + κc

2
z

)]
= 0,

for z ∈ (−αc
∞,αc

∞) with boundary conditions
limz �→αc∞ μ(z)(z − αc

∞) = 0 and μ(−αc
∞) = 0.

To solve this differential equation for z ∈ [−αc
∞,αc

∞], we
decompose μ(z) in its even and odd parts. These parts satisfy
two first-order coupled ordinary differential equations that can
be integrated directly to give expression (40) for μ(z).
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[15] S. Deléglise et al., Nature (London) 455, 510 (2008).
[16] L. Davidovich, A. Maali, M. Brune, J. M. Raimond, and

S. Haroche, Phys. Rev. Lett. 71, 2360 (1993).
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