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1 Materials and methods

1.1 Qubit fabrication
The transmon qubit was fabricated with a double-angle-evaporated Al/AlOx/Al Josephson junc-
tion, defined using the bridge-free fabrication technique (30) on a double-side-polished 2 mm-
by-19 mm chip of c-plane sapphire with a 0.43 mm thickness. The aluminum film thickness for
each deposition was 20 nm and 30 nm. The Josephson junction has an area of 0.09± 0.02 µm2.
Between these two depositions, an AlOx barrier was grown via thermal oxidation for 6 minutes
in 100 Torr static pressure of gaseous mixture 85 % argon 15 % oxygen. The room-temperature
junction resistance was 6.67 kΩ.

The sapphire chip was placed across two 3D aluminum cavities separated by a 2 mm wall, as
shown in Fig. S2. These cavities were machined out of high purity aluminum (99.99% purity),
and prepared by removing ≈ 200 µm of material with acid etching (31). The antenna pads on
each side of the Josephson junction couple to the TE101 mode of each cavity. On the readout
cavity side, the antenna is 0.5 mm wide and 7.5 mm long. On the storage cavity side, the antenna
is 0.5 mm wide and 4.2 mm long with a 0.01 mm gap capacitor for extra coupling tunability.
These dimensions were optimized to meet the desired coupling strengths using finite element
simulations and black box circuit quantization analysis (32).

1.2 Measurement setup
1.2.1 Waveguide Purcell filter

The output of the readout cavity is coupled to a transmission line through a WR-102 waveguide
which exponentially attenuates signals below a cutoff frequency of 5.8 GHz. This way, the
readout (7.152 GHz) is above cutoff, and is hence well coupled to the transmission line. On the
other hand, the qubit (4.9007 GHz) is below, and is hence isolated from the transmission line.
With this architecture, we obtained a qubit lifetime of T1 = 23 µs despite its strong coupling to
the low Q readout cavity (χqr/2π = 35 MHz, κr = (26 ns)−1). Waveguide transmission at the
qubit frequency is set by the waveguide length (7.62 cm) and detuning below cutoff, and in our
case is -70 dB (at 300 K), while only -0.16 dB (at 300 K) at the cavity frequency. The coupling
between the cavity and waveguide is through an aperture, whose dimensions (7.4 mm long,
3.96 mm wide, 5.64 mm deep) determine the coupling strength, which is measured to be Qout

r

= 7500 (assuming internal quality factor Qin
r � Qout

r ). The input couplings for the readout and
storage cavities were measured at room temperature to be Qin

r =4,000,000 and Qin
s =15,000,000.

The output port of the storage cavity Qout
s ≈ Qin

s was not used in this experiment.

1.2.2 Amplification chain

The transmission line is connected to a Josephson parametric converter (JPC) acting as a phase
preserving amplifier (33), operating near the quantum limit with a gain of 20 dB over a band-
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width of 4.6 MHz. We obtain an input noise visibility ratio for the amplification chain of 8 dB,
indicating that ≈90% percent of the noise at room temperature are amplified quantum fluctua-
tions. The qubit state is measured by sending a square pulse of length Tpulse = 1 µs through the
input readout port. The frequency of this pulse is centered at the readout cavity frequency when
the qubit is in its ground state. When the qubit is in its ground state |g〉, the pulse transmits to
the cavity output port towards the JPC. Since the dispersive shift is much larger than the cavity
line width (χqr � κr � 1/Tpulse), if on the other hand, the qubit is in its excited state |e〉, the
pulse reflects off the input port. When the qubit is in |g〉, the steady state number of photons
in the readout cavity during this pulse is about 4 photons (calibrated using qubit measurement
induced dephasing (34)).

When exiting the JPC, the pulse propagates through two isolators at 20 mK, a superconduct-
ing line between the 20 mK stage and the 4 K stage, where it is amplified by a HEMT amplifier
with 40 dB gain. At room temperature, the signal is further amplified, mixed down to 50 MHz
and digitized with an analog to digital converter (ADC) (see Fig. S1). For each measurement,
we record the two quadratures (I and Q) of the digitized signal. A histogram of 820,000 mea-
sured (I ,Q) values is shown in Fig. S3. This histogram is the sum of two gaussians: the right
one corresponds to the qubit in |g〉 and the left one corresponds to the qubit in |e〉 (correspond-
ing to a qubit thermal excited state occupancy of 20%). The I and Q quadratures are rotated
such that the information lies in the I quadrature only. The right gaussian is squeezed in the
Q quadrature, which is a consequence of the JPC saturation. An (I ,Q) value lying on the right
(left) hand side of the threshold indicated by dotted line in Fig. S3 is associated to a qubit in the
ground (excited) state. This threshold is calculated such that the errors of mistaking |g〉 for |e〉
and |e〉 for |g〉 are equal. This separability fidelity is calculated here to be 99%, which would
coincide with the measurement fidelity in the limit of large T1.

1.3 System parameters
1.3.1 Parameter values

The system parameters are shown in Tables S1 and S2.

1.3.2 Choice of parameters

As described in the main text, the goal of this experiment was to obtain a non-linear dissipation
rate κ2 = χ2

sr

κr
|ξp|2 which is as large as possible. This rate is proportional to the pump power

and the square of the readout-storage cross-Kerr χsr. It is not possible to pump arbitrarily
hard since mixing of the pump due to higher order non-linear terms will eventually produce
undesirable effects. For example, in Fig. S5, we can see that for pump powers larger than
100 mW (measured at the output of the generator), the storage mode linewidth increases above
the linewidth in absence of pump. We have also seen that for pump powers larger than 200
mW, the qubit thermal population starts to increase. This is why we fix the pump power to
100 mW for the rest of the experiment. From the AC Stark shift on the qubit, we know that
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this corresponds to |ξp|2 = 1.2. Therefore, it is useful to have a large enough χsr in order to
achieve κ2 of the same order as κs for |ξp| ≈ 1. For our parameter values, this corresponds
to χrs/2π of the order of 200 kHz. We designed our system to obtain the latter coupling. We
cannot increase this coupling too much since we believe this will decrease the storage cavity
lifetime due to the Purcell effect (in the near future, we plan on designing a pass-band, instead
of a high-pass, Purcell filter to lift this constraint). Since we have χrs = 2

√
χrrχss, and we

want a storage Kerr at most of the order of its linewidth (in order to minimize the distortion of
the coherent state superpositions), we had to increase the readout Kerr χrr (by increasing the
junction participation in this mode (32)) until we obtained the desired χrs. Moreover, we needed
to have a qubit mode to perform Wigner tomography. The latter necessitates short un-selective
pulses on the qubit (22). For this reason, we needed a large enough transmon anharmonicity,
which necessarily implied a very large qubit-readout cross-Kerr (here χqr/2π = 35 MHz).

Strongly coupling a qubit to a lossy resonator reduces its coherence times due to the Purcell
effect. The use of a Purcell filter (35) (described above) seemed favorable. This is why we
designed our qubit frequency to be around 5 GHz, and the readout mode around 7 GHz, the
former below and the latter above the waveguide cutoff frequency. The pump tone needs to be
at ωp = 2ωs − ωr, which is below the readout if ωs < ωr and above otherwise. We thought
it would be more cautious to have this strong pump tone as far as possible from the qubit (to
avoid the pump coupling to the qubit mode), and therefore designed the storage mode to be
about half a GHz above the readout. This way, the pump is one GHz above the readout mode,
and hence three GHz above the qubit. The drawback of this design is that the storage mode is
not protected by the Purcell filter since it is above cutoff. In the near future we will repeat this
experiment with a pass-band Purcell filter.

1.4 Measurement methods
1.4.1 Spectroscopy

Readout mode and qubit spectroscopy are obtained by performing transmission spectroscopy
and saturation spectroscopy, respectively. Storage mode spectroscopy is obtained by sequen-
tially sending a long (100 µs) and weak probe tone to the storage input port, then performing a
selective π pulse (19) on the qubit conditioned on there being zero photons in the storage, and
finally measuring the qubit through the readout mode. If the probe tone is off-resonant with the
storage mode frequency, the storage photon number remains zero, the π pulse therefore inverts
the qubit state. On the other hand, if the probe tone is resonant, the storage gets populated to
larger photon numbers, hence the π pulse cannot completely invert the qubit state. This change
in qubit state vs. probe frequency is detected by the measurement pulse through the readout
mode.
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1.4.2 Lifetimes

Qubit lifetime T1 and coherence time T2 are measured with the usual T1 and Ramsey pulse
sequences. The readout mode lifetime is extracted from its linewidth. Since the readout mode
has a relatively large Kerr (χrr/2π = 2.14 MHz), the transmission spectra are broadened by this
Kerr as we increase the power of the probe tone. Hence, we perform transmission spectroscopy
for decreasing probe power until the linewidth stops narrowing. The mode lifetime is then
1/κr where κr/2π is the spectral linewidth at small probe powers. The storage mode lifetime
is obtained by first displacing the storage state, and after a variable wait time, measuring the
parity of the storage state. By fitting the data, we obtain the storage lifetime.

1.4.3 Thermal population

Qubit thermal population is obtained by taking a single shot histogram of the qubit state (see
Fig. S3). We get the thermal excited state occupancy by extracting the probability of getting a
count on the left hand side of the threshold (dotted line). We can give a bound on the thermal
population nth

r of the readout mode. This thermal population nth
r induces a dephasing rate for

the qubit given by κφ,th = nth
r κr, in the limit where χqr � κr (36). We know that the measured

dephasing rate κφ = 1/T2 − 1/2T1 ≈ 1/T2 (since T1 � T2), is at least larger than κφ,th. The
inequality κφ ≥ κφ,th is equivalent to

nth
r ≤ 1/(T2κr) = 2% .

By measuring the qubit number split spectrum to the storage mode, we should in principle be
able to measure the storage thermal occupancy. However, the spectrum linewidth sets a bound
on which thermal population in the storage one can robustly measure. This linewidth κspec/2π is
due to the finite spectroscopy pulse length and power, and is bounded by (2πT2)−1. Assuming
a small number of thermal photons nth

s � 1, at equilibrium, the storage is in a mixture of the
vacuum state with probability (1 − nth

s ) and the first excited state with probability nth
s . The

spectrum of the qubit is then S(ω) = (1 − nth
s )S0(ω) + nth

s S1(ω), where S0 and S1 are the
qubit spectrums when the number of photons in the storage is 0 or 1, respectively. We have

Sk(ω) =
|εprobe|2

(κspec
2 )

2
+(ω−ωq−kχqs)2

, where εprobe is the probe amplitude, and we have neglected the

effect of κs on κspec since in practice κs � κspec. When we measured the spectrum S while the
storage was in thermal equilibrium, we could not resolve a peak at ωq − χqs corresponding to
one photon. This implies that we have nth

s S1(ωq − χqs) ≤ (1 − nth
s )S0(ωq − χqs). In our case,

we took a qubit spectrum with a gaussian π pulse (800 ns standard deviation), and we observed
a linewidth κspec=1/(0.23 µs). In the limit where κspec � χqs, this sets the following bound on
our measure of nth

s :

nth
s ≤ (κspec/2χqs)

2 = 5% .
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1.4.4 Cross-Kerr terms

The qubit to readout cross-Kerr is obtained by measuring the readout spectrum. Due to the
thermal occupancy of the qubit, this spectrum exhibits two peaks, separated by χqr/2π. The
qubit to storage cross-Kerr is obtained by inserting photons in the storage and measuring a
qubit spectrum. We see many peaks, each one corresponding to a photon number state in the
storage. The linear dependence of the central frequency of each peak on the peak number give
the qubit-storage cross-Kerr (see Fig. S4). This measurement is further refined by performing a
parity revival experiment (22). The readout to storage cross-Kerr is obtained by measuring the
readout frequency as a function of photons inserted in the storage. The readout mode frequency
decreases linearly with storage photon number with a proportionality constant corresponding to
the cross-Kerr.

1.4.5 Kerr terms

The transmon anharmonicity (also termed qubit Kerr χqq) is obtained by measuring qubit spec-
troscopy with increasing probe power until we observe the two photon transition from |g〉 to
|f〉, which is detuned from the main |g〉 to |e〉 peak by half the qubit anharmonicity. The read-
out mode Kerr is obtained from the pump Stark shift (Fig. S5). Indeed, as we will show in
the following section, due to the pump, all three modes frequencies decrease linearly with the
pump power. The ratio of the slopes of the qubit shift to the readout shift is χqr/2χrr. Hence,
knowing χqr, we extract χrr. A useful check is to make sure that the ratio of slopes of the
qubit and storage shifts is indeed χqr/χrs. We find that this value agrees with the independently
measured cross-Kerr values with a deviation of 5%. The storage Kerr was not measured, but
merely estimated from the formula χss = χ2

qs/4χqq (32).

1.4.6 Photon number calibration

The storage cavity was displaced using a 20 ns square pulse. Similarly to (12), we calibrate
the amplitude of this pulse by measuring a cut of the Wigner function of the vacuum state,
and fitting a gaussian to the data. The DAC to photon number correspondence is obtained by
imposing that the standard deviation of this gaussian needs to be 1/2. We calibrate the number
of photons in the readout mode by measuring the measurement-induced dephasing rate on the
qubit while a tone is applied to the readout mode (34).

1.4.7 Phase locking

The quantum state produced in the storage is a consequence of non-linear mixing of the pump
and drive tones in our Josephson circuit. If we used a third generator to probe the state of the
storage, this generator would not be phase locked to the state in the storage, and hence we would
expect all our Wigner functions to be completely smeared and to exhibit no phase coherence.
To avoid this problem we generate the pump and storage tones from two separate generators at
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respectively ωp and ωs, and we mix them at room temperature to generate the drive tone (see
dashed box in Fig. S1). This is achieved by doubling the frequency of the storage generator to
2ωs using a mixer, and then mixing this doubled frequency with the pump to obtain 2ωs ± ωp.
The upper sideband at 2ωs + ωp is then filtered by a low pass filter with a 12 GHz cutoff
frequency, and hence only the drive tone at the desired frequency ωd = 2ωs − ωp enters our
device. We use fast microwave switches controlled by markers from the arbitrary waveform
generator (AWG) to produce the pulse sequences for the experiment.

1.4.8 Parity measurement and Wigner tomography

The Wigner function uniquely defines the quantum state ρs of an oscillator. It is defined as
W (α) = 2

π
P (α), where P (α) = Tr

(
D−αρsDαe

iπa†sas
)

(27, Sec. 6.5).
In this experiment, we directly measured P (α = I + iQ) following the measurement pro-

tocol of (22, 28) (see Fig. S6). In the data of Figs. S7-S8, for each point (Ik, Qk) of the I − Q
plane, we repeat 10,000 times:

1. Initialize the qubit by measuring its state and post-selecting on it being in the ground state

2. Displace the cavity state with a 20 ns square pulse of amplitude ak =
√
I2
k +Q2

k and
phase φk = arg(Ik + iQk)

3. Perform a +π/2 pulse on the qubit around the X-axis.

4. Wait for π/χqs

5. Perform a +π/2 pulse on the qubit around the X-axis (then repeat all steps with a −π/2
pulse)

6. Measure the qubit state

All measurements are single shot and are binned to be 0 or 1 depending on whether the data
point lies on the left or right of the threshold (see Fig. S3). Each one of the qubit pulses is a
gaussian pulse with a 4 ns standard deviation, and we truncate the pulse length to 5 standard de-
viations. After post-selecting on the initial measurement, the data is averaged, and two Wigner
maps are obtained. One corresponding to both pulses with a +π/2 angle, and the other where
the second pulse is with a −π/2 angle. We then subtract these two maps in order to correct for
systematic errors due to the readout-storage cross-Kerr and the finite un-selectivity of the π/2
pulses (22, 28).

Indeed, assume the storage is in a pure state |ψ〉, and we want to measure its Wigner func-
tion. We model the finite un-selectivity of the π/2 pulses by assuming that there is an Nmax,
such that if there are n ≤ Nmax photons in the cavity, the pulses are able to rotate the qubit state,
whereas for all n > Nmax, the qubit state is unaffected by the pulse. Each qubit measurement
is thresholded and associated to the qubit being in state g or e. The probability of measuring
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m = g, e when the qubit state was in fact in t = g, e is denoted pα(m|t). In the latter nota-
tion, the superscript α refers to the displacement amplitude of the storage, which is a simplified
model incorporating the readout-storage cross-Kerr and its effect on the readout fidelity due to
the presence of photons in the storage. First, we displace the state by α, and denote the dis-
placed state |ψα〉. Second, we perform two π/2 pulses separated by a π/χqs wait time. We then
obtain the following qubit-storage entangled state :

|ψα〉+ = Peven |ψα〉 |e〉+ Podd |ψα〉 |g〉+ P>Nmax |ψα〉 |g〉 ,

where Peven =
∑

2n≤Nmax
|2n〉 〈2n|, Podd =

∑
2n+1≤Nmax

|2n+ 1〉 〈2n+ 1| and P>Nmax =
∑

n>Nmax
|n〉 〈n|.

The measured quantity, which is the expectation value of the qubit energy is

〈σz〉+ = ||Peven |ψα〉| |2(pα(e|e)− pα(g|e))− ||Podd |ψα〉| |2(pα(g|g)− pα(e|g))

+ ||P>Nmax |ψα〉| |2(pα(e|g)− pα(g|g)) .

When the second π/2 pulse has a π phase shift, we get

|ψα〉− = Peven |ψα〉 |g〉+ Podd |ψα〉 |e〉+ P>Nmax |ψα〉 |g〉 ,

and hence

〈σz〉− = ||Peven |ψα〉| |2(pα(e|g)− pα(g|g))− ||Podd |ψα〉| |2(pα(g|e)− pα(e|e))
+ ||P>Nmax |ψα〉| |2(pα(e|g)− pα(g|g)) .

We then substract these two expectation values and obtain ∆ 〈σz〉 = Cα(||Peven |ψα〉| |2 −
||Podd |ψα〉| |2) = CαP (α), where the contrast Cα is given by Cα = 1

2
(pα(g|g) + pα(e|e) −

pα(e|g) − pα(g|e)). In the case of perfect readout: pα(g|g) = pα(e|e) = 1 and pα(e|g) =
pα(g|e) = 0, and hence Cα = 1. Notice that this subtraction eliminated the third term in 〈σz〉±
which is due to the finite un-selectivity of the pulses, and would appear as an offset in the
Wigner tomography. This subtraction also makes the effect of the storage-readout cross-Kerr
symmetric, making no bias towards positive or negative values.

From these measured Wigner functions, one can reconstruct a density matrix which best
reproduces this data (22). As a consistency check, we can compare the diagonal elements of this
reconstructed density matrix, to the directly measured photon number probabilities using qubit
spectroscopy. As shown in Fig. S11, there is a good agreement between these two independent
measurements. One can also extract the expectation value of any observable directly from the
measured Wigner function, and compare them to the theoretical predictions through numerical
simulations. This comparison is made in Figs. S9-S10, and we observe good agreement between
theory and experiment.

1.4.9 Qubit dynamics during the pumping

When the pump and the drive tones are on, the readout mode remains mainly in vacuum and
the storage state evolves from vacuum to a mixture of coherent states, while transiting through
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a coherent state superposition (see Fig. 4 of the main text). In principle, if the Hamiltonian
of the three modes (qubit, readout, storage) is fully captured by the Hamiltonian described
in Eq. S1Eq. S2, the qubit state should not be influenced by the pumping. For example, if
we initialize the qubit in its ground state before activating the pump and drive tones, the qubit
should remain in its ground state, unless it absorbs a thermal photon, and this thermal absorption
rate should be independent of the number of photons in the two other modes. However, we have
observed that when the pumping is on, as the photon number in the storage mode increases, the
qubit thermal occupation increases significantly. This is most likely related to the previously
unexplained mechanism which causes the qubit lifetime to decrease when photons are inserted
in the readout mode (37).

The parametric pumping mechanism relies on the frequency matching condition ωp = 2ωs−
ωr, where ωp,s,r are the pump, storage and readout frequencies, respectively. The pump and
drive tone frequencies need to be tuned with a precision of order g2, as observed in Fig. 2 of the
main paper, and computed in the next section (see Eq. S7). In our experiment, we tune these
tones to fulfill this condition when the qubit is in its ground state. If the qubit suddenly jumps
to the excited while the pumping is activated, the readout and storage frequencies will shift by
their respective dispersive coupling to the qubit χqr and χqs. In particular, (χqr − χqs)/2π =
33.4 MHz � g2/2π = 111 kHz. Hence, the frequency matching condition no longer holds,
and the pumping process is interrupted. This undesirable process can be slightly filtered by
measuring the qubit state after completing the pumping, and post-selecting on the qubit being
in its ground state (see Fig. S6). However, we do not filter out processes where the qubit jumped
up to the excited state for a random time, and jumped back down to its ground state before the
measurement is performed. We believe it is these kinds of processes which produce an excess
of n=0 population in the storage (see Fig. S11). The effect of these large pumps and populated
modes on the qubit decay rates is subject to ongoing research.

2 Supplementary text

2.1 The pumped Josephson circuit Hamiltonian
We start by writing the Hamiltonian of the qubit, readout and storage modes coupled to a
Josephson junction, with two tones (the drive and the pump) on the readout mode.

H/h̄ =
∑

m=q,r,s

ω̄ma†mam −
EJ
h̄

(
cos(ϕ) + ϕ2/2

)
+ 2<

(
εpe
−iωpt + εde

−iωdt
)

(ar + a†r) ,

ϕ =
∑

m=q,r,s

ϕm(am + a†m) .

The first term corresponds to the Hamiltonian of three linear modes described by annihilation
operator am. Their bare frequencies ω̄m are shifted towards the measured frequencies ωm due
to the contribution of the Josephson junction in the Hamiltonian. The latter is represented by
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the cosine term from which we have removed the quadratic terms by definition of the modes
annihilation operators. EJ is the Josephson energy, and ϕ is the phase across the junction,
which can be decomposed as the linear combination of the phase across each mode, with ϕm
denoting the contribution of modem to the zero point fluctuations of ϕ. The system is irradiated
by a drive and pump tones with complex amplitudes εd, εp and frequencies ωd, ωp, respectively.
<() denotes the real part. The pump is a large amplitude far off-resonant tone, while the drive
is a weak tone close to resonant with the readout mode.

We place ourselves in a regime where

ωp, ωd, ω̄m � εp ∼ (ωp − ω̄r)�
EJ
h̄
||ϕ| |4/4! .

In order to eliminate the fastest time scales corresponding to the system frequencies and the
pump amplitude, we make a change of frame using the unitary

U = eiω̄qta
†
qaqeiωdta

†
rarei

ωp+ωd
2

ta†sase−ξ̃pa†r+ξ̃∗par ,

dξ̃p
dt

= −iω̄rξ̃p − i2<
(
εpe
−iωpt

)
− κr

2
ξ̃p .

After a time scale of order 1/κr we have ξ̃p ≈ ξpe
−iωpt, ξp = −iεp/

(
κr
2

+ i(ω̄r − ωp)
)
≈

−iεp/
(
κr
2

+ i(ωr − ωp)
)
.

In this new frame, the Hamiltonian is

H̃/h̄ = (ω̄r − ωd)a†rar + (ω̄s −
ωp + ωd

2
)a†sas −

EJ
h̄

(cos(ϕ̃) + ϕ̃2/2) ,

ϕ̃ =
∑

m=q,r,s

ϕm(ãm + ã†m) + (ξ̃p + ξ̃∗p)ϕr ,

ãq = e−iω̄qtaq , ãr = e−iωdtar , ãs = e−i
ωp+ωd

2
tas .

We now expand the cosine up to the fourth order, and only keep non-rotating terms:

H̃ ≈ Hshift + HKerr + H2 , (S1)

where :

Hshift = (−δq − χqr |ξp|2)a†qaq
+ (ω̄r − ωd − δr − 2χrr |ξp|2)a†rar

+ (ω̄s −
ωp + ωd

2
− δs − χrs |ξp|2)a†sas ,

HKerr = −
∑

m=q,r,s

χmm
2

a†m
2a2
m − χqra†qaqa†rar − χqsa†qaqa†sas − χrsa†rara†sas ,

H2 = g∗2a2
sa
†
r + g2(a†s)

2ar + εda†r + ε∗dar . (S2)
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The first term Hshift corresponds to the modes frequency shifts. The bare frequencies are shifted
by δq,r,s which arise from the operator ordering chosen in HKerr. Moreover, the frequencies are
shifted down by a term proportional to |ξp|2, which corresponds to the AC Stark shift induced
by the pump. We observe this linear shift vs. pump power in Fig. S5.

The second term HKerr corresponds to self-Kerr and cross-Kerr coupling terms (32). We
have: χmm = EJ

h̄
ϕ4
m/2, and χmm′ = EJ

h̄
ϕ2
mϕ

2
m′ .

The last term H2 contains the terms which reveal the physics we have observed in this
paper. It is the microscopic Hamiltonian of a degenerate parametric oscillator (9). The first
term in this Hamiltonian is a non-linear coupling between the storage and readout modes: two
photons from the storage can swap with a single photon in the readout. In contrast to the usual
parametric oscillator, our readout mode is not twice the frequency of the storage mode. This
term is produced by four-wave mixing of the pump and the readout and storage modes. The
term in εd corresponds to a drive on the readout mode. Our coupling strength is given by

g2 = χsrξ
∗
p/2 .

The second term in H2 is a coherent drive on the readout mode. It corresponds to the input
energy which is converted into pairs of photons in the storage, thus creating coherent state
superpositions.

2.2 Two-mode model and semi-classical analysis
Here we assume the qubit remains in its ground state. The storage and readout modes evolve
under the Hamiltonian:

Hsr = ∆da†rar +
∆p + ∆d

2
a†sas

+ g∗2a2
sa
†
r + g2(a†s)

2ar + εda†r + ε∗dar (S3)

− χrsa†rara
†
sas −

∑
m=r,s

χmm
2

a†m
2a2
m , (S4)

where ∆d = ω̄r−ωd− δr− 2χrr |ξp|2 and ∆p = −∆d + 2(ω̄s− ωp+ωd
2
− δs−χrs |ξp|2). Theory

curves of Fig.2 in the main paper are obtained by numerically finding the steady state density
matrix of the Lindblad equation with damping operators

√
κrar and

√
κsas and Hamiltonian

Hsr.
We now write the quantum Langevin equations with damping, which require including in-

coming bath fields ainr and ains (14, Sec. 4.4):

d

dt
ar = −i[ar,Hsr]−

κr
2

ar +
√
κrainr ,

d

dt
as = −i[as,Hsr]−

κs
2

as +
√
κsains .

10



The remainder of this section is devoted to gaining some insight into the steady state solu-
tions of the equations above. We simplify this task by neglecting the Kerr terms in the Hamil-
tonian. This leads us to:

d

dt
ar = −i∆dar − ig∗2a2

s − iεd −
κr
2

ar +
√
κrainr , (S5)

d

dt
as = −i∆p + ∆d

2
as − 2ig2a†sar −

κs
2

as +
√
κsains . (S6)

We can further simplify these nonlinear Langevin equations by taking the classical limit,
where the field operators are replaced by their complex expectation values (14, Sec. 4.4):

0 = −i∆dar − ig∗2a2
s − iεd −

κr
2
ar ,

0 = −i∆p + ∆d

2
as − 2ig2a

∗
sar −

κs
2
as .

One solution is
as = 0 , ar = −iεd/(

κr
2

+ i∆d) . (S7)

This is the usual classical Lorentzian response of a driven-damped oscillator. Now assuming
as 6= 0, we obtain a second solution for ar:

ar =
−∆p −∆d + iκs

4g2

e2iθs ,

where θs is the phase of as. Here, the modulus squared of ar is a parabolic function of the
detuning ∆p + ∆d with a width of 1/ |4g2|2, and a minimal value |κs/4g2|2. This corresponds
to the dip observed in Fig. 2 of the main paper, and its depth is a direct signature of the fact that
g2 � κs. The response of the storage cavity as verifies:

a2
s =

1

g∗2
(−∆d + i

κr
2

)ar −
εd
g∗2

,

|as|2 =
1

4 |g2|2
(∆d − i

κr
2

)(∆p + ∆d − iκs)−
εd
g∗2
e−2iθs .

A sufficient condition for this equation to have a solution is∣∣∆d − iκr2
∣∣ |∆p + ∆d − iκs|
4 |g2εd|

≤ 1 .

A model for the response |ar|2 of the readout mode as a function of the readout probe and
pump tone detunings is:

|ar|2 (∆r,∆p) = min

(
|εd|2

κ2r
4

+ ∆2
d

,
(∆p + ∆d)

2 + κ2
s

16 |g2|2

)
.

11



We have checked that this simple semi-classical expression without Kerr terms captures the
main features of the data in Fig. 2 (a) of the main paper. However, the transient coherent state
superposition shown in Fig. 4 of the main paper cannot be explained by such a semi-classical
model: it is a quantum signature of our system.

2.3 Single-mode model and classical analysis
2.3.1 Adiabatic elimination of the readout mode

We can adiabatically eliminate the readout mode (18, Sec. 12.1), and obtain a master equation
for the reduced density matrix of the storage mode alone. Let ρsr be the density matrix which
represents the joint readout and storage state. It verifies

d

dt
ρsr = −i[Hsr, ρsr] +

κr
2

D[ar]ρsr +
κs
2

D[as]ρsr , (S8)

where the Hamiltonian Hsr is given in Eq. S4, and here we take ∆d = ∆p = 0. Let δ be a small
dimensionless parameter δ � 1. We place ourselves in the regime where g2/κr, εd/κr, χrs/κr ∼
δ and χss/κr, κs/κr ∼ δ2. We assume that the number of photons in the readout mode is always
much smaller than one. We then search for a solution of Eq. S8 in the form

ρsr = ρ00 |0〉 〈0|+δ (ρ01 |0〉 〈1|+ ρ10 |1〉 〈0|)+δ2 (ρ11 |1〉 〈1|+ ρ02 |0〉 〈2|+ ρ20 |2〉 〈0|)+O(δ3) ,

where ρmn acts on the storage Hilbert space, whereas |m〉 〈n| act on the readout Hilbert space.
The goal here is to derive the dynamics of ρs = Trr(ρsr) = ρ00 + δ2ρ11 up to second order in
δ, where Trr denotes the partial trace over the readout degrees of freedom. First, lets multiply
Eq. S8 by 〈0| and |0〉. We get, up to second order terms in δ :

d

κrdt
ρ00 = − i

κr
〈0| [Hsr, ρ] |0〉+ δ2ρ11 +

κs
2κr

D[as]ρ00 +O(δ3)

= −iδ2
(
A†ρ10 − ρ01A

)
− i[−χss

2κr
(a†s)

2a2
s, ρ00] + δ2ρ11 +

κs
2κr

D[as]ρ00 (S9)

+ O(δ3) ,

where A = 1
δκr

(g∗2a2
s + εd), and hence ||A| | = O(1) in δ. We now need to find expressions of

ρ01,10,11 up to 0th order terms in δ. We find, neglecting terms of order δ and higher:

d

κrdt
ρ10 = −iAρ00 −

1

2
ρ10 +O(δ) , (S10)

d

κrdt
ρ11 = −i

(
Aρ01 − ρ10A†

)
− ρ11 +O(δ) . (S11)

The derivative of ρ10 has two terms: the first one can be interpreted as an external driving
term, and the second is a damping term. Although the first term is time dependent, making this

12



equation difficult to solve exactly, we know that its temporal variation is slow (of order δ2) in
comparison to the damping rate (of order 1). This is where we make the adiabatic approxima-
tion: we assume that ρ10 is continuously in its steady state. The same reasoning then applies to
ρ11, which yields:

ρ10 = −2iAρ00 +O(δ) , (S12)
ρ11 = −i

(
Aρ01 − ρ10A†

)
+O(δ) (S13)

= 4Aρ00A† +O(δ) . (S14)

Injecting these expressions in Eq. S9, and rearranging terms, we find

d

dt
ρs = −i[Hs, ρs] +

κ2

2
D[a2

s]ρs +
κs
2
D[as]ρs ,

Hs = ε∗2a2
s + ε2(a†s)

2 − χss
2

a†s
2a2
s ,

with
κ2 = 4 |g2|2 /κr , ε2 = −2ig2εd/κr .

This result can be found in (18, Eq. 12.10), where the modes have no Kerr and cross-Kerr
couplings.

2.3.2 Semi-classical analysis

Let us define α(t) = Tr (asρs) and calculate its dynamics. Using [as, (a†s)2] = 2a†s, [as, a†s
2a2
s] =

2a†sa2
s and Tr (asD[a2

s]ρs) = −2Tr
(
a†sa2

sρs
)
, we find

d

dt
α = −2iε2Tr

(
a†sρs

)
+ iχssTr

(
a†sa

2
sρs
)
− κ2Tr

(
a†sa

2
sρs
)
− κs

2
α .

Let us assume a solution in the form of a coherent state ρs(t) = |α(t)〉 〈α(t)|, we then find

d

dt
α = −2iε2α

∗ − (−iχss + κ2) |α|2 α− κs
2
α .

The central panel of Fig. 3 of the main paper illustrates this equation. The white lines correspond
to trajectories governed by this equation, and the absolute value

∣∣ d
dt
α
∣∣ is represented by the

colormap.

In steady state α(t)→ α∞, and we have

0 = −2iε2α
∗
∞ − (−iχss + κ2) |α∞|2 α∞ −

κs
2
α∞ .

13



We write α∞ in the form α∞ = r∞e
iθ∞ and −iχss + κ2 = r2e

iϕ2:

2iε2r∞e
−iθ∞ = −r2e

iϕ2r2
∞r∞e

iθ∞ − κs
2
r∞e

iθ∞ .

Notice that α∞ = 0 is a solution, now assume α∞ 6= 0:

−2iε2e
−2iθ∞ = r2e

iϕ2r2
∞ +

κs
2
.

Taking the module square of this equation we get

r2
2r

4
∞ + r2κs cos(ϕ2)r2

∞ +
κ2
s

4
− 4 |ε2|2 = 0 .

The latter equation is quadratic in r2
∞, and we assume ϕ2 small enough in order for its discrim-

inant to be positive. If |ε2| ≤ κs
4

, this equation has no positive roots and hence α∞ = 0 is the
unique solution.

Now lets assume |ε2| > κs
4

, then

r2
∞ =

1

2r2
2

(
−r2κs cos(ϕ2) +

√
(r2κs cos(ϕ2))2 − 4r2

2(
κ2
s

4
− 4 |ε2|2)

)
,

and two solutions exist for the phase θ∞:

θ−∞ = θ2/2 + 3π/4− ϕK/2
θ+
∞ = θ−∞ + π ,

where θ2 is the phase of ε2, and ϕK = arctan( r2∞r2 sin(ϕ2)
r2∞r2 cos(ϕ2)+κs/2

)

Note that if χss = 0, then r2 = κ2 and ϕ2 = 0 and we find

r∞

∣∣∣
χss=0

=

√
2 |ε2| − κs/2

κ2

.
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3 Supplementary figures
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Figure S1: Experiment schematic.
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Figure S2: Pictures of the device. (a) Photograph of the two halves of the 3D aluminum
cavities, the bridge transmon on a sapphire chip, and the rectangular waveguide. The left half
is screwed on to the right one. The readout cavity has a hole which couples it to the rectangular
waveguide behind it, which in turn is coupled to a transmission line through a waveguide via an
SMA adapter. (b) Left : schematics of the Josephson junction (JJ) and the antenna pads. Top
right: optical image in the region containing the JJ and the gap capacitor. The visible scratch
results from probing the junction resistance. Bottom right: Scanning electron microscope image
of the JJ.
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Figure S3: Single shot readout of the qubit state with the JPC. Top left panel: two-
dimensional histogram of the (I ,Q) values of 820,000 measurements of the qubit in thermal
equilibrium (20% ground state and 80% excited state). This histogram was rotated such that
the information about the qubit state is encoded in the I quadrature. The right and left gaussian
distributions correspond to the qubit in |g〉 and |e〉 respectively. Bottom panel: histogram of
the I values, where the sum of two gaussians (full line) is fitted to the data (full dots). Right
panel: Histogram of the Q values, where a single gaussian (full line) is fitted to the data (full
dots). The dotted line is the measurement threshold: if a data point lies on the left or right of
this threshold, the outcome is associated with |e〉 or |g〉 respectively. The gaussian on the right
is squeezed in the I quadrature due to the amplifier saturation.
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Figure S4: Qubit frequency as a function of the number of photons in the storage cavity.
When there are n=0 photons in the storage, the qubit frequency is fq = 4.9007 GHz. As
we introduce exactly n photons in the storage, the qubit frequency shifts in discrete steps to

fn = fq− χrq
2π
n+

χ
(3)
rq

2π
n2. We fit the data (full dots) to a quadratic function of n (full line), which

gives the quantities χqr/2π = 1.585 MHz, and χ(3)
rq /2π = 5 kHz (28). This qubit spectroscopy

experiment was performed after the storage reached the statistical mixture of ±α∞ after 19 µs
of pumping (see last panel of Fig. S11(a)).
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Figure S5: AC stark shift due to the pump tone. We place the pump tone at ωp = 8.011 GHz,
and vary its power. For each power, we measure the spectrum of the qubit (a,d), readout mode
(b,c) and storage mode (c,e). The frequencies of these modes (a-c) decrease linearly with the
pump power, as shown by the linear fit (full line) to the data (full dots). The linewidths are
represented in panels (d-f).
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Figure S6: Pulse sequence which generates the data of Fig. S7. We first initialize the qubit
state by measurement and post-selection. Then we switch on the pump and drive for a variable
amount of time. Finally, we perform Wigner tomography. The pulse sequence corresponding
to the tomography is in the dashed rectangle and is described in Section 1.4.8.
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(a)

(b)

(c)

Figure S7: Evolution of the storage mode state during pumping. We initialize the storage
state in vacuum and switch on the pump and drive tones for various times tk. Each one of the
20 panels in (a-d), ordered from left to right and top the bottom, is the Wigner function of the
storage state after tk = k µs of pumping. We compare the raw data (a) to the Wigner func-
tions obtained from (b) reconstructed density matrix (22) and from (c) numerical simulations.
The strong resemblance between the raw data and the Wigner from reconstructions shows that
our data can indeed be reproduced by a physically allowed density matrix: that is a positive,
hermitian and trace one matrix. This shows that any systematic errors are reasonably low. The
numerical simulations are obtained from solving the Lindblad master equation with Hamilto-
nian Eq. S1, assuming the drive and pump tones have well tuned frequencies, i.e. Hshift = 0.
We include photon loss and thermal processes for all three modes. All parameters included in
this simulation were independently measured or estimated.
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(b)

(a)

Figure S8: Evolution of the storage mode state during pumping. We initialize the storage
state in Fock state |1〉 and switch on the pump and drive tones for various times tk. Each one
of the 10 panels in (a,b), ordered from left to right, is the Wigner function of the storage state
after tk = k µs of pumping. We compare of the raw data (a) to the Wigner functions obtained
from a reconstructed density matrix (b). The Fock state is prepared by displacing the storage
mode by a coherent state with an average photon number of 0.5, and then projecting to the odd
parity manifold by measurement (28). As in Fig. S7, the state starts by being squeezed in the
Q quadrature. At t = 3 µs, the state resembles an odd Schrödinger cat state where a cut of
the Wigner function at I = 0 displays fringes. Indeed, since we initialize the storage mode in
an odd parity state, its evolution under exchanges of photon pairs conserves parity, and hence
the transient superposition state has odd parity. As in Fig. S7, the state finally converges to a
classical mixture of the two pointer states centered around |±α∞〉.
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Figure S9: Expectation values of observables for the storage state during pumping. From
the Wigner functions presented in Fig. S7, we can calculate the expectation value of any observ-
able (22). Values extracted from raw data are in full dots, and those extracted from the recon-
structed Wigner functions are in full line. We represent the average photon number (a), the av-
erages (b) and the variances (c) of X = (as + a†s)/2, P = i(as−a†s)/2. Defining X̄ = X−〈X〉
and P̄ = P − 〈P 〉, we represent in (d) the fourth order cumulants:

〈
X̄4
〉
− 3

〈
X̄2
〉2 and〈

P̄ 4
〉
− 3

〈
P̄ 2
〉2.
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Figure S10: Expectation values of observables for the storage state during pumping. Iden-
tical description as Fig. S9, where the values are extracted from the numerical simulations
described in Fig. S7.
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Figure S11: Photon number distribution of the storage state during pumping. Each panel
k of the 20 panels in (a,b), ordered from left to right and top to bottom, represents the photon
number distribution of the storage state after tk = k µs of pumping. In (a) we perform qubit
spectroscopy with a 400 ns sigma gaussian π pulse. Due to the qubit-storage number splitting,
this is a measure of the photon number distribution in the storage. In (b), we represent the
diagonal of the reconstructed density matrix obtained from the Wigner tomography. These two
independent measurements give consistent results, and exhibit the non-poissonian character of
the photon number distribution during the transient evolution.
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4 Supplementary tables

Mode Frequency (GHz) T1 (µs) T2 (µs) Thermal population
Qubit 4.9007 23 1 20%
Storage 7.57861 20 - ≤ 5%
Readout 7.152 0.025 - ≤ 2%

Table S1: Frequencies, thermal populations and coherence times of each mode.
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χ/2π (MHz) Qubit Storage Readout
Qubit 130
Storage 1.585 (0.004)
Readout 35 0.206 2.14

Table S2: Dispersive couplings between the qubit, storage and readout modes. The di-
agonal elements in this table refer to the self-Kerr terms, which enter in the Hamiltonian as∑

m=q,r,s−
χmm

2
a†m

2a2
m, where the subscripts m = q, r, s stand respectively for the qubit, read-

out and storage. The off-diagonal terms in the table are the cross-Kerr terms, which enter the
Hamiltonian as−χqsa†qaqa†sas−χqra†qaqa†rar−χrsa†rara†sas. The value for the storage Kerr (be-
tween brackets) was not directly measured, but only estimated from other measured quantities
using the geometric equality: χss = χ2

qs/4χqq (32).
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