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Abstract
This paper considers population transfer between eigenstates of a finite quantum ladder
controlled by a classical electric field. Using an appropriate change of variables, we show that
this setting can be set in the framework of adiabatic passage, which is known to facilitate
ensemble control of quantum systems. Building on this insight, we present a mathematical
proof of robustness for a control protocol—chirped pulse—practised by experimentalists to
drive an ensemble of quantum systems from the ground state to the most excited state. We
then propose new adiabatic control protocols using a single chirped and amplitude-shaped
pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of
systems with unknown coupling strengths. These adiabatic control protocols are illustrated by
simulations on a four-level ladder.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Population transfer from the eigenstate k to the eigenstate
l of a quantum system refers to finding a control input
such that the projection of the final system state on the
eigenstate l of the free Hamiltonian has the same norm as
the projection of the initial system state on the eigenstate
k. Applications of population transfer range from population
inversion [1], where k and l are the lowest and highest energy
eigenstates, respectively, to quantum information processing
[2–4], where logic gates would (selectively) permute the
populations of several eigenstates. In many applications,
including those mentioned, relative insensitivity to variations
in system parameters is important for robustness issues.

In this paper, we show how control inputs designed
on the basis of adiabatic passage can implement any given
permutation of eigenstate populations for a finite anharmonic
quantum ladder. The controls we use are chirped pulses
[5] with appropriately modulated amplitudes and exploit the
idea of eigenvalue crossing [6]. The ladder consists of a
free Hamiltonian with approximately equidistant eigenvalues

4 Author to whom any correspondence should be addressed.

and where the control input couples eigenstates associated
with consecutive eigenvalues. We show that any control
field satisfying a set of key properties achieves our target
population transfer independently of the values of dipole
moments coupling consecutive levels of the ladder, which
is a striking robustness feature. This is a major difference
with respect to early non-adiabatic approaches to molecular
ladder dissociation using chirped pulses [5]. Adiabatic passage
through eigenvalue crossings has also very recently been used
to prove approximate controllability in finite time of an infinite
dimensional quantum system [7].

In this sense, we achieve a specific form of ensemble
control. Ensemble control in its most general form wants the
same input to drive an ensemble of systems, with different
values of some parameter p, from a given p-dependent initial
state to a given p-dependent final state ([8], definition 1).
Currently, solutions to this general problem are essentially
restricted to two-level systems, achieving approximate
ensemble control in finite time and exact ensemble control
in infinite time [8–10]. They rely on accurate knowledge of
laser–system coupling strengths and accurately tailored inputs,
involving e.g. exact instantaneous ‘π -amplitude impulses’. In
our setting, system parameters need not be exactly known
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and the input must only satisfy a few key properties. In turn,
regarding initial-to-final-state transformations, we are limited
to population permutations (with arbitrary relative phases
between components of different eigenstates) that are constant
as a function of system parameters. Driving an ensemble of
two-level systems from a common initial to a common final
state has also been much studied in the NMR context, e.g. with
geometric methods [9].

Adiabatic passage is a control strategy that builds on
the adiabatic evolution property: a system state initially
close to an eigenstate of a time-varying Hamiltonian H(t)

approximately follows the time-varying eigenstate of H(t) if
it varies slowly enough; the slower H(t) varies, the better
the adiabatic approximation is. A thorough formal study of
adiabatic evolution can be found in [11–13], on which we
build the proofs of our results. Adiabatic evolution has been
standard since the early days of quantum mechanics [14],
e.g. when interpreting system evolution in terms of ‘avoided
eigenvalue crossings’. In a ladder control context, population
inversion in two-level systems by a ‘chirped’ pulse—where
frequencies of a Gaussian laser pulse are spread out in time—
is known by experimentalists and theoretically explained in
the adiabatic framework [15]. This is the most basic case of
our control, section 3 with N = 2. Many experimentalists
have then focused on multiple-laser techniques, individually
addressing pairwise couplings in an N-level system; this
includes stimulated Raman adiabatic passage (STIRAP), see
e.g. [16–18]. For N-level ladder systems specifically, the
possibility of population transfer from the lowest to the
highest energy eigenstates with a single chirped laser pulse
has been recognized and exploited in ‘adiabatic rapid passage’
experiments [1, 18–20]. An analysis of N-level adiabatic
molecular dissociation with chirped pulses is given in [21]
based on the Floquet representation. In the present paper we
provide a simple mathematical proof of population inversion
with avoided crossings (gap condition) based on Favard’s
theorem [22] and on the roots of orthogonal polynomials
[23], and extend the framework by adding amplitude control
to perform not only population inversion but all different
permutations of free Hamiltonian eigenstates.

The paper is organized as follows. Section 3 gives the
formal statement and section 6 the proof for N-level population
inversion with ‘adiabatic rapid passage’, actually proving
how the initial population of level k is finally transferred
to level N − k − 1 in adiabatic approximation. The key
point for using adiabatic passage is a change of frame that
depends on time-varying control input phase; it is detailed
in section 2 after a formal description of the ladder system.
The proof then applies the standard ‘adiabatic theorem with
spectral gap condition’, where time-varying eigenvalues are
shown to remain separated for all times. The inversion is
insensitive to exact energy values of the individual levels
in the ladder. Section 4 proposes adiabatic control inputs
to transfer population between two arbitrary eigenstates. It
requires the control field to vanish at specific times which
depend on (some) energy levels of the anharmonic ladder,
such that we select a pair of time-varying eigenvalues to
cross. System evolution is then ruled by the ‘adiabatic

theorem without spectral gap condition’. A complementary
study of system behaviour in the neighbourhood of two
crossing eigenvalues and valid for more general systems
than ladder ones can be found in [24]. We again provide
a formal proof of the control’s effect and highlight its
ensemble/robustness features in section 6. Section 5
finally shows how any permutation of eigenstate populations
can be achieved in this adiabatic passage framework. Each
control protocol is illustrated by a simulation at the end of the
corresponding section.

Notation. We use the Dirac bra-ket notations: |ψ〉 ∈ C
N

denotes a complex vector, 〈ψ | = |ψ〉† is its Hermitian
transpose and 〈.|.〉 : C

N × C
N → C : (|ψ1〉, |ψ2〉) →

〈ψ1|ψ2〉 = 〈ψ1||ψ2〉 is the Hermitian scalar product. For
z ∈ C we denote its real part as �(z) and its conjugate as
z∗. HN is the set of N × N Hermitian matrices, where
N ∈ N. We denote I as the N × N identity matrix. For
any matrix A ∈ C

N×N , we denote its Frobenius (or Hilbert–
Schmidt) norm as ‖A‖ =

√
tr A† A where tr denotes trace. For

H ∈ HN , it holds ‖H‖ =
√∑N−1

i=0 λ2
i where λ0, . . . , λN−1 are

the (real) eigenvalues of H. For H ∈ HN and λ an eigenvalue
of H, we denote by Pλ ∈ HN the orthogonal projector on
the eigenspace of H associated with the eigenvalue λ. If H
has M distinct eigenvalues {λ0, . . . , λM−1}, with M � N ,
then H = ∑M−1

k=0 λkPλk
is the spectral decomposition of H. If

M = N , then H is called non-degenerate and each Pλk
is a

rank-one projector. When M < N we say that H is degenerate;
then some Pλk

have rank larger than 1.
S

1 denotes the unit circle equivalent to R modulo 2π . For
J an interval of R, the derivative of a differentiable function
f : J → S

1 is a function from J to R. For all n ∈ N, we denote
by Cn(J,K) the set of n times continuously differentiable
functions from J to K, where J is an interval of R and K is an
interval of R or S

1. A multi-component function is n times
continuously differentiable, e.g. H(s) ∈ Cn(J,HN), if all its
components belong to Cn(J,K). For f ∈ C1(J,K ⊆ R

n), we
note f ′(y) ∈ C0(J, R

n) the value at y ∈ J of the derivative
of f . R>0 is the set of strictly positive real numbers; we
use analogue notation with �, � or <. N

b
a is the set of

integers from a to b, both boundaries included. When writing
c0, . . . , cN−1 ∈ S we mean that ck belongs to the set S for
each k ∈ N

N−1
0 . Infimum and supremum of a set are denoted

by inf and sup respectively.

2. Problem setting

2.1. Standard formulation

Consider a quantum system with wavefunction |ψ〉 ∈
C

N, 〈ψ |ψ〉 = 1, N ∈ N, whose dynamics is governed by
the Schrödinger equation (with h̄ = 1)

i
d

dt
|ψ(t)〉 = (H0 + u(t)H1) |ψ(t)〉 . (1)

The Hamiltonians H0 ∈ HN and H1 ∈ HN respectively
characterize free and control-induced evolution, u(t) being
a real scalar control. In this paper, we consider a quantum
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ladder for which the Hamiltonians, in the eigenbasis {|0〉, . . . ,
|N − 1〉} of H0, take the form

H0 =
N−1∑
k=0

k(ω0 + �k) |k〉〈k| (2)

H1 =
N−2∑
k=0

μk (|k〉〈k + 1| + |k + 1〉〈k|), (3)

with ω0 ∈ R>0; �0, . . . ,�N−1 ∈ R; and μ0, . . . , μN−2 ∈
R>0. We assume that the system (1) features two very different
orders of magnitude:

||u(t)H1|| ≈ |�k| 
 ω0 for all k and all t. (4)

Physically, H0 is the free Hamiltonian of a quantum ladder
with mean resonant frequency ω0 and anharmonicities �k .
We call eigenstates |0〉, . . . , |N − 1〉 of H0 the levels of the
ladder. H1 is the dipole moment matrix and models couplings
between consecutive eigenstates; it is therefore tridiagonal
with zero diagonal elements, and can be taken real positive and
symmetric without loss of generality. Condition (4) expresses
that control amplitude is relatively weak and that the ladder is
close to a harmonic one, i.e. eigenvalues of H0 associated with
consecutive eigenstates are close to equidistant. This allows
us to exploit resonant transitions between all consecutive
eigenstates with control of carrier frequency ω0. We
consider a typical such control with a small positive
parameter ε:

u(t) = 2 �(eiω0tE(t)), E(t) = A(εt) e
i
ε
θ(εt) (5)

with ‖ d

dt
E(t)‖ 
 ω0, (6)

where A(t) ∈ R and θ(t) ∈ S
1 for all t ∈ R�0. The parameter

ε governs the rate of variations in the envelope A(εt) and
frequency d

dt
1
ε
θ(εt) = θ ′(εt) of E(t); we show in the next

sections how taking ε small allows us to apply adiabatic
passage properties. The slow but nonzero frequency variation
is a key element for our control strategy. Physically, control
fields like (5) are obtained e.g. by ‘shaping’ a single-laser
pulse [25].

The rotating wave approximation (RWA), standard in
quantum system modelling, consists in writing (1) with the
change of variable |φ(t)〉 = (∑N−1

k=0 eikω0t |k〉〈k|)|ψ(t)〉 and
neglecting fast oscillating terms, to keep only those that vary
at frequencies 
ω0. It can be justified by averaging theory
[26] thanks to inequalities (4), (6). Within this approximation,
|φ〉 follows the dynamics

i
d

dt
|φ(t)〉 = (H̄I + H̃I (t)) |φ(t)〉 (7)

where

H̄I =
N−1∑
k=0

k�k|k〉〈k|

H̃I (t) =
N−2∑
k=0

μk(E(t)|k〉〈k + 1| + E∗(t)|k + 1〉〈k|).

2.2. Change of frame

The Hamiltonian H̃I (t) contains a control field whose phase
1
ε
θ(εt) varies on timescales of order 1. The key idea to

apply adiabatic passage to the N-level system is an appropriate
further change of frame on (7), such that all explicit time
dependence in the resulting dynamics involves timescales
of order ε. To this end, we extend the change of frame
given in [15], section 4.6, for the two-level case and define
|ξ(t)〉 = ∑N−1

k=0 ek i
ε
θ(εt) |k〉〈k| |φ(t)〉. Dynamics (7) becomes

i
d

dt
|ξ(t)〉 = (HR(ω(εt)) + A(εt)H1) |ξ(t)〉 (8)

with ω = θ ′, H1 given by (3) and

HR(v) =
N−1∑
k=0

k(�k − v)|k〉〈k| for all v ∈ R. (9)

Define the propagator Uε to be a time-dependent N by N
unitary matrix such that the solution of (8) is given by
|ξ(t)〉 = Uε(t)|ξ(0)〉 for all t and for all |ξ(0)〉. Then Uε

follows the dynamics

iε
d

ds
Uε(s) = H(s)Uε(s), Uε(0) = I (10)

with H(s) = HR(ω(s)) + A(s)H1 (11)

in the timescale s = εt . In the following, we study the
system (10) for s in the interval [0, 1] and with A(s) and
ω(s) as controls. Our goal is to achieve:

(a) Adiabatic approximate eigenstate permutations:

lim
ε→0+

max
k∈G

‖Uε(1)|k〉〈k|Uε(1)† − |σ(k)〉〈σ(k)| ‖ = 0

(12)

for given G ⊆ N
N−1
0 and given permutation σ of

(0, . . . , N − 1).
(b) Ensemble control: a single control (A, ω) achieves

such eigenstate permutation on an ensemble of systems
with different parameter values; the parameters are the
dipole moments (μ0, . . . , μN−2) and, in some cases, the
anharmonicities (�0, . . . ,�N−1).

(c) Robust control inputs: the above holds for any (A, ω) that
satisfies a set of key properties.

Remark 1. Writing (12) in terms of |k〉〈k|, the projector
on the eigenspace {β |k〉 : β ∈ C}, expresses that the goal is
really population transfer, i.e. we allow Uε(1)|k〉 ≈ eiχk |σ(k)〉
with arbitrary phases χk ∈ S

1. Both frame changes—for
RWA in section 2.1 and θ -dependent in section 2.2—involve
only phase changes on eigenstates. Therefore, for all t and
for all |k〉,

‖|ψ(t)〉〈ψ(t)| − |k〉〈k|‖ = ‖|φ(t)〉〈φ(t)| − |k〉〈k|‖
= ‖|ξ(t)〉〈ξ(t)| − |k〉〈k|‖.

3
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3. Robust ensemble transfer from |k〉 to
|N − k − 1〉

In this section we consider a control protocol—chirped
pulse—used by physicists to drive a system from the lowest
eigenspace, spanned by |0〉, to the highest eigenspace, spanned
by |N − 1〉, of the free Hamiltonian H0 given in (2). In
fact we prove that a general (robust) class of control inputs
transfers population from the eigenstate |k〉 to the eigenstate
|N −k−1〉, for all k, on an ensemble of systems with different
values of parameters μ0, . . . , μN−2 (dipole moments) and
�0, . . . ,�N−1 (anharmonicities).

The key requirements on the control are (i) to use
a sufficiently chirped pulse—condition (b) in theorem 1—
and (ii) to avoid all eigenvalue crossings—condition (c) in
theorem 1.

3.1. Transfer theorem

For k = 0, . . . , N − 1 let λR
k (s) = 〈k|HR(ω(s))|k〉 =

k(�k − ω(s)), the eigenvalues of HR(ω(s)).

Theorem 1. For given � > 0, μmax > μmin > 0, consider
S an ensemble of systems of type (10) with μj ∈ [μmin, μmax]
for all j ∈ N

N−2
0 and �j ∈ [−�,�] for all j ∈ N

N−1
0 . Take

controls A and ω with

(a) A and ω ∈ C2([0, 1], R),

(b) ω(0) and ω(1) are such that, for all systems in S,

λR
0 (0) < · · · < λR

N−1(0) and (13)

λR
0 (1) > · · · > λR

N−1(1),

(c) A(0) = A(1) = 0 and A(s) �= 0 for s ∈ ]0, 1[.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

k∈N
N−1
0

‖Uε(1)|k〉〈k|Uε(1)† − |N − k − 1〉〈N − k − 1|‖ � Cε.

The proof of this theorem is given in section 6; we there
actually replace the simple condition (c) on A by a more
general condition: (c′) A(0) = A(1) = 0 and A(s) �= 0
for all s ∈ Iω(S), where

Iω(S) = {s ∈ [0, 1] :

HR(ω(s)) is degenerate for some system ∈ S}. (14)

The argument is based on the facts that the system
approximately follows eigenstates of H(s) for small enough ε

(adiabatic theorem), eigenvalues of HR are inverted between
s = 0 and s = 1 thanks to ω(s) (chirping) and nonzero
A(s) avoids all crossings for eigenvalues of H(s) such that
e.g. the initial highest-energy level |N − 1〉 connects to the
final highest-energy level |0〉 (see lemma 1 in section 6).
Theorem 1 implies that for a given control satisfying the
assumptions, taking ε small enough allows us to invert the
state populations of a whole ensemble of systems featuring
different parameter values. The control inputs only need
to satisfy a few weak conditions and are therefore robust
to many perturbations. These insensitivity properties of the

adiabatic passage protocol have long been recognized by
experimentalists. They commonly use the following type of
control, see e.g. [18].

Example 1. A function ω satisfying the inequalities (13)
is e.g. ω(s) = α(s − 1

2 ), for a large enough positive α;
such ω is said to perform a frequency sweep. Except
for the finite extension of time domain, such inputs are
obtained by a ‘chirped’ Gaussian laser pulse, which takes
the form E(t) = E0

∫ +∞
−∞ e−ζ 2τ 2

eiκζ 2
e−iζ t dζ where κ �= 0

characterizes chirping.

Theorem 1 still holds if inequality (13) is replaced by

λR
0 (0) > · · · > λR

N−1(0) and λR
0 (1) < · · · < λR

N−1(1),

i.e. the direction of the frequency sweep in example 1 can be
inverted (taking a large enough negative α). However, for
a given system, choosing one inequality over the other may
allow us to get a lower value for the constant C in theorem 1.
This brings a mathematical foundation to the experimental
observations made e.g. in [20].

3.2. Simulations

We simulate the system (10) with a control satisfying
assumptions (a), (b) and (c) of theorem 1. We consider a
four-level quantum ladder (so N = 4). We take ε = 10−2,
�0, . . . ,�3 ∈ [−0.4, 0.4] and μ0, μ1, μ2 ∈ [μmin, μmax] =
[1, 5]. The control is ω(s) = 8(s − 1

2 ) and A(s) = s(1 − s),
represented in figure 1(a). Figure 1(b) shows how the
eigenvalues of H(s) (thick lines) avoid crossing. For the
illustrated random choice of detunings, the eigenvalues of
HR(ω(s)) (thin lines) are very close to concurrent between
s = 0.5 and s = 0.6. This poses no problem for the adiabatic
transfer from |k〉 to |N − k − 1〉. The successful transfer is
illustrated in figure 1(d), which shows the squared norm of
the projection of Uε(1)|k〉 onto |p〉, for all pairs (|k〉, |p〉) of
eigenvectors of H0; this is equivalent to the squared norm
of the element on row p, column k of the matrix Uε(1)

that acts by left-multiplication on initial column vectors, for
Uε(1) expressed in the basis (|0〉, . . . , |3〉). Figure 1(c) shows
ensemble control on ten systems with different random values
of �0, . . . ,�3 and μ0, μ1, μ2.

4. Robust ensemble transfer from |l〉 to |p〉

In this section we propose a new robust control protocol to
drive a system from the eigenspace (of free Hamiltonian H0)
spanned by |l〉 to the eigenspace spanned by |p〉, for any
given l and p in N

N−1
0 . The population transfer works on an

ensemble of systems with different values of μ0, . . . , μN−2

(dipole moments), and for a general class of inputs where
zero-crossings of A(s) must be correlated with degeneracies
of HR(ω(s)); the latter depend on ω(s) and (some of the)
anharmonicities �0, . . . ,�N−1, which must hence be fixed.
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Figure 1. Control scheme transferring |k〉 to |N − k − 1〉. (a) Control inputs A(s), ω(s). (b) s-dependent eigenvalues of H(s) (thick lines)
and of HR(ω(s)) (thin lines). (c) Population on level |3〉 for ten systems whose parameters μ0, μ1, μ2 and �1,�2, �3 were randomly
picked respectively in [1, 5] and [−0.4, 0.4], and all starting at the initial state |0〉. (d) Squared norm of the matrix elements of Uε(1),
represented in shading from white (value 0) to black (value 1).

4.1. From |0〉 to any |p〉
For the sake of clarity, we start by giving sufficient conditions
on A and ω for the particular population transfer from |0〉
to arbitrary level |p〉. Section 4.2 generalizes the result to an
arbitrary initial state |l〉. Consider the following assumptions:

(A1) S is an ensemble of systems of type (10) with μj ∈
[μmin, μmax] for all j ∈ N

N−2
0 , for some given μmax >

μmin > 0, and with given sequence of detunings
(�0, . . . ,�N−1), such that the set {k(�k−v) : k ∈ N

N−1
0 }

contains at least N − 1 distinct values for any v ∈ R;
(A2) ω is analytic and d

ds
ω(s) > γ > 0 for all s ∈ [0, 1];

(A3) ω(0) and ω(1) are such that (13) holds.

For any m and n in N
N−1
0 with m < n, we denote by s(m,n)

the unique time5 where λR
m(s(m, n)) = λR

n (s(m, n)).
As all systems in S have the same sequence of detunings,

they feature the same eigenvalues λR
0 , . . . , λR

N−1 of HR and
hence the same set of s(m, n). The set of all s(m, n) equals
Iω defined in (14), with dependence on a particular system
∈ S becoming irrelevant. The end of (A1) further implies
that HR has at most one pair of equal eigenvalues for any
s ∈ [0, 1], i.e. (m, n) �= (j, k) implies s(m, n) �= s(j, k);
hence, Iω contains N(N − 1)/2 distinct values. Further

5 If assumptions (A1) to (A3) hold, then the existence and unicity of s(m, n)
is ensured for all m and n > m: see figure 2(b) or figure 3(c).

define Iω
0 = {s1, . . . , sN−1} ⊂ Iω the N − 1 points where

λR
0 (s) = λR

n (s) for some n ∈ N
N−1
1 , numbered such that

s1 < s2 < · · · < sN−1. Thus, for each sk ∈ Iω
0 there exists a

unique n ∈ N
N−1
1 such that sk = s(0, n).

The key requirements on the control to achieve population
transfer from |0〉 to |p〉 are (i) to use a sufficiently chirped
pulse frequency—condition (A3)—and (ii) to shape the
pulse amplitude in order to appropriately provoke—(c) in
theorem 2—or avoid—(b), (d) in theorem 2—crossing of
eigenvalues of H.

Theorem 2. Consider S an ensemble of systems satisfying
(A1) with a control ω satisfying (A2) and (A3). Take p ∈
{0, . . . , N − 1} and consider a control A with the following
properties.

(a) A is analytic over [0, 1] and A(0) = A(1) = 0.
(b) A(s) �= 0 for all s ∈ Iω\Iω

0 .
(c) A(sk) = 0 for all sk ∈ Iω

0 with k � N − p − 1.
(d) A(sk) �= 0 for all sk ∈ Iω

0 with k � N − p.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

‖ Uε(1)|0〉〈0|Uε(1)† − |p〉〈p| ‖ � C
√

ε.

The proof, given in section 6, shows that at
eigenvalue crossing points the system adiabatically follows
the eigenvector corresponding to the crossing branch.

5
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4.2. From any |l〉 to any |p〉
Under assumptions (A1)–(A3), we denote Iω

k+(s) =
{s(m, n) ∈ Iω : m = k, n > k and s(m, n) > s} and
Iω

k−(s) = {s(m, n) ∈ Iω : m < k, n = k and s(m, n) > s},
for any k ∈ N

N−1
0 . Further let qk±(s) = inf(Iω

k±(s)) and define
gk±(s) by s(k, gk+(s)) = qk+(s) and s(gk−(s), k) = qk−(s)

respectively. For p � N − l − 1, construct Iω
lp with the

following algorithm:
1: d := 0; x := 0; k := l; Iω

lp := ∅;
2: while d < N − l − p − 1 do
3: while [ Iω

k−(x) �= ∅ and qk−(x) < qk+(x) ] do
4: k := gk−(x); x := qk−(x);
5: end while
6: Iω

lp := Iω
lp ∪ {qk+(x)}; d := d + 1; x := qk+(x);

7: end while
The algorithm always successfully completes6. For

p � N − l − 1, we can define Iω
lp with a similar algorithm but

where ‘<’ is changed to ‘>’ on line 2 and indices k−, k+ are
switched. Then Iω

lp contains |N − l − p − 1| elements.

Corollary 1. Consider S an ensemble of systems satisfying
(A1) with a control ω satisfying (A2) and (A3). Take l, p in
N

N−1
0 and consider a control A with the following properties:

(a) A is analytic over [0, 1] and A(0) = A(1) = 0.
(b) A(s) = 0 for all s ∈ Iω

lp.
(c) A(s) �= 0 for all s ∈ Iω \ Iω

lp.

Then ∃ a constant C > 0 such that, for all ε > 0,

sup
S

‖ Uε(1)|l〉〈l|Uε(1)† − |p〉〈p| ‖ � C
√

ε.

Assumption (A1) ensures that each eigenvalue
crossing/anti-crossing can be addressed individually. This
ensures that any transfer can be implemented in any situation,
but it is in general not necessary for a given system and transfer,
as (simultaneous) crossings of some eigenvalue branches are
irrelevant. The control proposed for theorem 2 or corollary 1
is just one amongst many possibilities of ‘eigenvalue crossing
designs’. Indeed, depending on (l, p) and on the particular
arrangement of s(m, n), one can find other subsets Jlp ⊂ Iω

such that taking A(s) = 0 if and only if s ∈ Jlp permutes the
eigenvalues in such a way that λl(1) = λR

p (1) (see section 6 for
the formal definition of λl(1)). The controls that we propose
are optimal in the sense that they require a minimal number
of pairwise crossings, that is, of annihilations of A at accurate
points. Variant annihilation subsets Jlp may be useful (i) to
avoid some crossing points s(m, n) or eigenvalue branches
(e.g. because corresponding �m or �n is poorly known, or
because s(m, n) is close to some other point in Iω), (ii) to
optimize adiabatic convergence as a function of ε or (iii) to
simultaneously perform population transfers between several
eigenstates, as we do in section 5.

Another approach [27] for transferring |l〉 to |p〉 is
to use A(s) Gaussian, i.e. without any annihilations, but

6 Indeed by construction, the cardinality of Iω
k+(x) equals N − l − d − 1

(except during the update on line 6) and the cardinality of Iω
k−(x) decreases

by one each time line 4 is applied; thus it is impossible to keep applying
line 4 infinitely, and line 6 is always well defined (that is Iω

k+(x) �= ∅) for
d < N − l − 1.

reduce ω(s) to a specific range. Indeed, under the above
assumptions, it is possible to choose ωmin and ωmax such
that l(�l − v̄) = p(�p − v̄) for some v̄ ∈ [ωmin, ωmax] and
HR(v) is non-degenerate for all v ∈ [ωmin, ωmax]\{v̄}. Then
taking ω(s) monotone between ωmin and ωmax just induces one
avoided crossing that exchanges |l〉 and |p〉. Pictorially, this is
like selecting a particular narrow vertical slice in figure 1(b).
Depending on the specific system under study and whether it
is experimentally easier to precisely modulate the amplitude
or the phase of a field, one method may be more suitable than
the other. A main advantage of our method is that, unlike the
method proposed in [27], it can be extended to achieve any
permutation of eigenstates as is shown in section 5.

4.3. Simulations

As in section 3.2 we simulate (10) for a four-level quantum
ladder (so N = 4) with μ0, μ1, μ2 ∈ [μmin, μmax] = [1, 5].
We now take ε = 10−3 and in accordance with the statement
of theorem 2 we fix the anharmonicities, taking �1 = −1,
�2 = 0.3, �3 = 0 (the value of �0, multiplied by k = 0,
is irrelevant). We target in particular a transfer from |0〉
to |2〉. The algorithm of section 4.2 reduces to the simple
case of theorem 2, requesting a single zero of A(s) at
s = inf{s(0, 1), s(0, 2), s(0, 3)} = s(0, 1) = 0.25 in addition
to A(0) = A(1) = 0. We take A(s) = s(1 − s)(s − 0.25) and
ω(s) = 4(s− 1

2 ), represented in figure 2(a). Figure 2(b) shows
how the eigenvalues λk(s) of H(s) cross or not (thick lines);
the eigenvalues of HR(ω(s)) (thin lines) define points s(m, n)
for our control design. Figure 2(d) confirms achievement of the
intended result by showing the squared norm of components
of the matrix Uε(1) in the basis (|0〉, . . . , |3〉): we indeed
have |〈p|Uε(1)|k〉|2 ≈ 1 for (p, k) = (2, 0) (other values
incidental). Figure 2(c) illustrates ensemble control on ten
systems with different random values of μ0, μ1, μ2. Since for
this particular case the control only exploits precise crossing
point s(0, 1) = 0.25, we might actually allow ensembles with
different �2,�3.

5. Robust ensemble permutation of populations

In this section we describe the most general result of the
paper, adiabatically transferring (|0〉〈0|, . . . , |N − 1〉〈N − 1|)
to (|σ(0)〉〈σ(0)|, . . . , |σ(N − 1)〉〈σ(N − 1)|), where σ is
any permutation of N

N−1
0 . As in section 4, the population

permutation works on an ensemble of systems with different
values of μ0, . . . , μN−2 (dipole moments), and for a general
class of inputs where zero-crossings of A(s) must be correlated
with degeneracies of HR(ω(s)); the latter depend on ω(s) and
require anharmonicities �0, . . . ,�N−1 to be fixed and known.
We prove existence of an appropriate control by recurrence on
N. In fact this recurrence method can be used to design A(s),
as we illustrate in section 5.2.

5.1. Permutation theorem

Theorem 3. Consider S an ensemble of systems satisfying
(A1) with a control ω satisfying (A2) and (A3). Take σ any

6
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Figure 2. Control scheme transferring |0〉 to |2〉; subplots analogous to figure 1, except that �1, �2, �3 remain fixed for (c). A(s) vanishes
at s = 0.25 so that λ0 and λ1 cross instead of avoiding crossing.

permutation of N
N−1
0 . Then there exists a subset IA ⊆ Iω for

which, taking control A to satisfy

(a) A analytic over [0, 1] and A(0) = A(1) = 0,
(b) A(s) = 0 for all s ∈ IA,
(c) A(s) �= 0 for all s ∈ Iω \ IA,

implies that ∃ a constant C > 0 such that, for all ε > 0,

sup
S

k∈N
N−1
0

‖ Uε(1)|k〉〈k|Uε(1)† − |σ(k)〉〈σ(k)| ‖ � C
√

ε.

Since the proof of this theorem is constructive and
necessary for the understanding of the example below, we
present it here.

Proof. (of theorem 3). The formal arguments (sup, adiabatic
propagator) are presented in detail in the proof of theorem 1
in section 6. We focus on the construction of the control A(s)

by following analytic eigenvalue branches λk(s) of H(s).
The property is obvious for N = 2: either (σ (0), σ (1)) =

(1, 0), which follows theorem 1 just requiring A(s(0, 1)) �= 0;
or (σ (0), σ (1)) = (0, 1), which follows theorem 2 transferring
|0〉 to |p〉 = |0〉 with one crossing7, i.e. just requiring
A(s(0, 1)) = 0.

7 Indeed, {Pλ0(1), Pλ1(1)} = {|0〉〈0|, |1〉〈1|} then automatically implies
transferring |1〉〈1| to Pλ1(1) = |1〉〈1|.

Assume that we can achieve any permutation of N
K−1
0

for N = K , and we are given a permutation σ of N
K
0 for

N = K + 1 where σ(l) = K and σ(K) = p.

• If l = p = K , i.e. σ(K) = K , then first build the
remaining permutation on levels |0〉, . . . , |K − 1〉 by
neglecting level |K〉. This uses the result for N = K; it
just requires A(s) = 0 for some s = s(m, n) and A(s) �= 0
for some other s = s(m, n), with m, n < K . Now take
a particular such A(s) where in addition, A(s) = 0 for
all s ∈ {s(m,K) : m ∈ N

K−1
0 }. Then λK(s), starting

at λK(0) = λR
K(0), exactly follows the same crossings

as λR
K(s) to end up as λK(1) = λR

K(1); the other levels
remain unperturbed, so σ is achieved.

• If l �= K �= p, then first construct A(s) by applying the
result of the preceding point to σ , defined by

σ(l) = p; σ(K) = K; σ(k) = σ(k) for all k �∈ {l, K}.
A(s) performs the target permutation, except that K
remains on K and l goes to p. From (13) the eigenvalue
branch λK(s) necessarily crosses, at some s ∈ {s(m,K) :
m ∈ N

K−1
0 }, the analytic eigenvalue branch that starts at

λl(0) = λR
l (0) and ends at λl(1) = λR

p (0). Define A(s) to

have the same zeros as A(s) except that A(s) �= 0. This
just transforms the crossing at s into an anti-crossing, such
that the analytic branch coming from λK(0) (respectively

7
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Figure 3. Control scheme generating permutation σ(0, 1, 2, 3) = (2, 0, 3, 1) and simulation result. Subplots (a),(b),(d) are analogous to
figure 1. Subplot (c) shows the eigenvalues of HR(ω(s)), used to design IA (see text). The points s ∈ IA where A(s) = 0 are marked on (a).

λl(0)) now connects to the analytic branch going to λp(1)

(respectively λK(1)). Thus A(s) achieves the target
permutation σ . ��
Each ‘eigenvalue crossing design’ choice IA yields a

particular permutation σIA
. For N > 2, the number 2N(N−1)/2

of possible IA (i.e. subsets of Iω) is strictly larger than the
number N ! of permutations. Thus there are still several IA
that yield the same σ . Unlike in section 4, building A(s) as
in the proof of theorem 3 does not necessarily yield a minimal
cardinality of IA for given σ .

5.2. Example and simulations

We first illustrate the control design by recurrence based on
the proof of theorem 3. Consider the target permutation
σ(0, 1, 2, 3) = (2, 0, 3, 1). First we reduce it down to an
elementary permutation. Start with K = N − 1 = 3 and
note (l, p) = (2, 1) because σ(2) = K and σ(K) = 1;
we thus define σ(0, 1, l = 2, 3) = (2, 0, p = 1, 3) and
impose A(s) = 0 for s ∈ {s(0, 3), s(1, 3), s(2, 3)} reducing
the permutation to 0, 1, 2. Then we take K = N − 1 = 2 and
note (l, p) = (0, 1) because σ(0) = K and σ(K) = 1; we
thus define σ(l = 0, 1, 2, 3) = σ(p = 1, 0, 2, 3) and impose

A(s) = 0 for s ∈ {s(0, 2), s(1, 2)} reducing the permutation

to 0, 1. To implement σ we need A(s(0, 1)) �= 0. Now

we progressively move up to permutations on more levels,
removing one at a time from our objects. The reader
is encouraged to follow crossings/anti-crossings under the
different controls by referring to figure 3(c), corresponding

to our chirping choice ω(s) = 4(s − 1
2 ). Under A the analytic

branch from |l〉 = |0〉 to |p〉 = |1〉 meets the branch staying on
|K〉 = |2〉 at s = s(1, 2). We therefore impose A(s(1, 2)) �= 0

unlike for A, and for the rest copy the requirements of A:
A(s(0, 1)) �= 0, A(s(0, 2)) = 0. Now under A the branch
from |l〉 = |2〉 to |p〉 = |1〉 crosses the branch staying on
|K〉 = |3〉 at s = s(2, 3). We therefore get requirements
for our actual control A by imposing A(s(2, 3)) �= 0 unlike
for A, for the rest copying the requirements of A, i.e.
A(s) = 0 for s ∈ {s(0, 3), s(1, 3), s(0, 2)} and A(s) �= 0
for s ∈ {s(0, 1), s(1, 2)}. To satisfy these requirements, we
take the polynomial control A(s) = s(1 − s)(s − s(0, 3))(s −
s(1, 3))(s − s(0, 2)), represented in figure 3(a). Figure 3(b)
shows how the eigenvalues of H(s) cross and anti-cross
depending on whether A(s) vanishes or not. The squared
norm components of Uε(1) resulting from a simulation of (10)
with this control and ε = 10−3 are shown in figure 3(d) on a
white-to-black scale, confirming achievement of permutation
σ(0, 1, 2, 3) = (2, 0, 3, 1).

Figure 4 shows the same squared norm components of
Uε(1) in grey shades for 24 cases, corresponding to different

8
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1

0

Figure 4. Simulation results of (10) for 24 different controls A(s) following theorem 3 to achieve each one of the 24 permutations of
(0, 1, 2, 3) with adiabatic passage. Shading represents squared norm of elements of matrix Uε(1) expressed in the basis |0〉, . . . , |3〉, from
white (value 0) to black (value 1). In other words, each subplot may be read as a 4 × 4 matrix where the black patches are ones and the white
patches are zeros; gray patches indicate intermediate values, reflecting that the unitary propagator obtained by integrating (10) is not exactly
a permutation matrix for the finite ε = 10−3, the permutation becoming perfect for infinitesimal ε according to our theorems.

control inputs A(s) designed for all 24 possible permutations
of the set (0, 1, 2, 3). The controls A(s) are built as the product
of (i) a polynomial vanishing on IA∪{0, 1} and only there, and
(ii) a set of functions (1 +g(s − s(m, n))), with g(s − s(m, n))

Gaussians centred on all s ∈ Iω \ IA; the role of the latter
is to amplify A(s) in the vicinity of intended ‘anti-crossings’,
improving convergence of the adiabatic limit as a function of
ε. Figure 4 corresponds to the choice ε = 10−3.

6. Proofs

In this section we give the proofs of all the formal results
presented in previous sections.

6.1. Proof of theorem 1

We start the proof by recalling the following result [28].

Lemma 1. Let DN be a real tridiagonal and symmetric
N × N matrix defined by

DN =
N−1∑
k=0

ak|k〉〈k| +
N−2∑
k=0

ck(|k〉〈k + 1| + |k + 1〉〈k|) (15)

in some orthonormal basis (|0〉, . . . , |N − 1〉). If ck �= 0 for
all k ∈ N

N−2
0 , then DN is non-degenerate.

Proof (of lemma 1). Denote by Qn the characteristic
polynomial of Dn, which is defined as (15) with N replaced by
n, for all n ∈ {1, . . . , N}. The sequence of polynomials (Qn)n
verifies the following recurrence relation: for n � 2,

Qn(x) = (x − an−1)Qn−1(x) − (cn−2)
2 Qn−2(x), (16)

with Q0(x) = 1 and Q1(x) = x − a0. According to Favard’s
theorem [22], a sequence verifying (16) where (cn−2)

2 > 0 for
all n is a sequence of orthogonal polynomials. Furthermore,
from [23], theorem 3.3.1, every polynomial Qn in a sequence
of orthogonal polynomials has n real and distinct zeros;
this is in particular true for n = N ; therefore, DN is
non-degenerate. ��

Proof (of theorem 1). We prove the result for any single
system in S and conclude that it remains true for the sup over
S. Indeed, the application

(μ0, . . . , μN−2,�0, . . . ,�N−1)

→ ‖ Uε(1)|k〉〈k|Uε(1)† − |N − k − 1〉〈N − k − 1| ‖
reaches its sup over the allowed compact space since the state
of a (sufficiently regular) dynamical system at a finite time
depends continuously on system parameters (see e.g. [29],
theorem 3.5). The proof for one system is in two steps: first
we prove that the hypotheses of the adiabatic theorem with gap
condition are verified; then we apply the theorem to compute
the image at s = 1 of an initial projector |k〉〈k| in adiabatic
approximation.

Step 1: by hypothesis (a), we have H(s) ∈ C2([0, 1],HN)

and therefore continuous over [0, 1]. From [30], section
II.5.2, it is then possible to find N continuous functions
λ0(s), . . . , λN−1(s) such that λ0(s) � · · · � λN−1(s)

for all s ∈ [0, 1] are the eigenvalues of H(s). In
terms of associated eigenspace projections, note that
{Pλk(s) : k ∈ N

N−1
0 } = {|k〉〈k| : k ∈ N

N−1
0 }

every time A(s) = 0 and H(s) is non-degenerate, by
unicity of the spectral decomposition of a non-degenerate
matrix. However, the pairwise correspondence depends
on the value of ω(s). In particular, by hypotheses (b)
and (c),

Pλk(0) = |k〉〈k| and Pλk(1) = |N − k − 1〉〈N − k − 1|
(17)

for all k. For a given s ∈ [0, 1],

• either A(s) �= 0, then H(s) has N distinct eigenvalues
according to lemma 1;

• or A(s) = 0, then H(s) = HR(ω(s)) and it
must have N distinct eigenvalues by hypothesis (c′).
Hence,

λ0(s) < · · · < λN−1(s) for all s ∈ [0, 1]. (18)
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Then by continuity over the compact [0, 1], there
exists δ > 0 such that λk(s) + δ < λk+1(s) for
all k ∈ N

N−2
0 and for all s ∈ [0, 1]: each λk(s)

is at all times surrounded by a ‘spectral gap’ of
amplitude δ in which there is no other eigenvalue.
We can therefore apply the adiabatic theorem with
gap condition (see [13], theorem 2.2) to eigenvalue
λk(s), for any particular k ∈ N

N−1
0 , as is done in the

following.

Step 2: the adiabatic theorem ensures that Pλk(s) ∈
C2([0, 1],HN). Define the ‘adiabatic Hamiltonian’

Ha,k(s) = H(s) − iεPλk(s)

d

ds
Pλk(s) − iεP ⊥

λk(s)

d

ds
P ⊥

λk(s)

(19)

where P ⊥
λk(s)

= I − Pλk(s), and the ‘adiabatic propagator’
Uε

a,k which verifies, for all s ∈ [0, 1],

iε
d

ds
Uε

a,k(s) = Ha,k(s) Uε
a,k(s) with Uε

a,k(0) = I. (20)

One verifies that this construction ensures

Uε
a,k(s)Pλk(0)U

ε
a,k(s)

† = Pλk(s) (21)

for all s ∈ [0, 1]. The adiabatic theorem states the
existence of a constant C1 > 0 such that

||Uε(s) − Uε
a,k(s)|| � C1ε for all s ∈ [0, 1],

in particular for s = 1. This implies

‖Uε(1)|k〉〈k|Uε(1)† − Uε
a,k(1)|k〉〈k|Uε

a,k(1)†‖
� ‖(Uε(1) − Uε

a,k(1))|k〉〈k|Uε(1)†‖
+ ‖Uε

a,k(1)|k〉〈k|(Uε(1) − Uε
a,k(1))†‖

� ‖Uε(1) − Uε
a,k(1)‖ ‖|k〉〈k|‖(‖Uε

a,k(1)‖ + ‖Uε(1)‖)
� C1ε · 1 · 2

√
N

since ‖U‖ =
√

tr U †U = √
tr I for any unitary matrix U.

Combining this with (17), (21) yields the result, where
C = 2C1

√
N . ��

6.2. Proof of theorem 2 and corollary 1

We start by proving a lemma about the behaviour of time-
dependent eigenvalues crossing each other.

Lemma 2. Assume that H(s) as defined in (11) depends
analytically on the real parameter s on an interval I ⊂ R,
with d

ds
ω(s) > γ > 0 for all s ∈ I. Suppose that HR(ω(s)) is

non-degenerate on I except for a simple degeneracy at s̄ ∈ I,
i.e. HR(ω(s̄)) has N − 1 distinct eigenvalues and HR(ω(s))

has N distinct eigenvalues for s ∈ I \ {s̄}. If A(s̄) = 0, then:

(a) there exist N unique functions λ0, . . . , λN−1 analytic over
I, with λ0(s) < · · · < λN−1(s) for all s < s̄, and such
that {λ0(s), . . . , λN−1(s)} are the eigenvalues of H(s) for
all s ∈ I.

(b) Let k be such that λk(s̄) = λk+1(s̄). Then for all s > s̄ we
have

λ0(s) < · · · < λk+1(s) < λk(s) < · · · < λN−1(s).

Proof (of lemma 2). Point (a) is a direct consequence of [30],
theorem 6.1. The order of the analytic eigenvalues is obviously
preserved over time intervals where H(s) is non-degenerate;
by lemma 1, these intervals are {s < s̄} and {s > s̄}. The
issue is what happens at s = s̄. In the following, we show
that λ′

k(s̄) �= λ′
k+1(s̄). Since the eigenvalues are analytic and

λk(s̄) = λk+1(s̄), a Taylor expansion then yields the conclusion
of (b).

We lead calculations similar to those of [14], section
XVI.II.8. According to [30], section II.6.2, since H is analytic
over I and H(s) ∈ HN for all s ∈ I, there exist rank-one
orthogonal spectral projections Pλ0(s), . . . , PλN−1(s) which are
analytic over I. Computing the derivative of

H(s)Pλk(s) = λk(s)Pλk(s) (22)

with respect to s at s = s̄, we obtain

H ′(s̄)Pλk(s̄) + H(s̄)P ′
λk(s̄)

= λ′
k(s̄)Pλk(s̄) + λk(s̄)P

′
λk(s̄)

.

Multiplying the last equation by (Pλk(s̄) +Pλk+1(s̄)) from the left,
using (22) and the fact that Pλk

and Pλk+1 are two orthogonal
projectors (P 2

λk
= Pλk

, P 2
λk+1

= Pλk+1 and Pλk
Pλk+1 = 0), we

obtain (Pλk(s̄) + Pλk+1(s̄))H
′(s̄)Pλk(s̄) = λ′

k(s̄)Pλk(s̄). Noting that
Pλk(s̄) = (Pλk(s̄) + Pλk+1(s̄))Pλk(s̄), we obtain

(Pλk(s̄) + Pλk+1(s̄))H
′(s̄)(Pλk(s̄) + Pλk+1(s̄))Pλk(s̄) = λ′

k(s̄)Pλk(s̄).

The analogue holds with k and k + 1 switched. This implies
that {λ′

k(s̄), λ
′
k+1(s̄)} are the eigenvalues of the 2 × 2 matrix

obtained by restricting the operator H ′(s̄) to the column space
of (Pλk(s̄) + Pλk+1(s̄)). Since A(s̄) = 0 we have H(s̄) =
HR(ω(s̄)). Denoting |m〉 and |n〉 the two eigenvectors of
HR corresponding to the eigenvalue λk(s̄) = λk+1(s̄), we have
Pλk(s̄) + Pλk+1(s̄) = |m〉〈m| + |n〉〈n|. Defining

(
H ′(s̄)

)
mn

=
(〈m|H ′(s̄)|m〉 〈m|H ′(s̄)|n〉

〈n|H ′(s̄)|m〉 〈n|H ′(s̄)|n〉
)

and computing

H ′(s̄) = ω′(s̄)
d

dv
HR(v) |v=ω(s̄) +A′(s̄)H1, we obtain

(
H ′(s̄)

)
mn

=
(−mω′(s̄) A′(s̄)μmn

A′(s̄)μmn −nω′(s̄)

)
(23)

where μmn = 〈m|H1|n〉. Thus μmn = 0 if |m − n| > 1 and
μmn �= 0 if |m − n| = 1. In both cases, since ω′(s̄) �= 0 and
m �= n, the matrix in (23) has two real and distinct eigenvalues,
corresponding to λ′

k(s̄) �= λ′
k+1(s̄). ��

Proof (of theorem 2). Taking A(s) = 0 at some points where
HR is degenerate means that eigenvalues of H(s) will not
remain distinct at those points. We therefore use the adiabatic
theorem without the spectral gap condition, see [13], corollary
2.5. Like for theorem 1, we prove the result for one system
∈ S and conclude the result for the sup. The proof is again
in two steps. First we state how the adiabatic theorem can be
applied; then we compute the image at s = 1 of the initial state
|k〉〈k| in adiabatic approximation.

10
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Step 1: since H is Hermitian, analytic over [0, 1]
and simply degenerate at isolated points, we can apply
lemma 2(a) repeatedly to conclude that there is
a unique set of functions λ0, . . . , λN−1 analytic
over I, with λ0(0) < · · · < λN−1(0), and
such that {λ0(s), . . . , λN−1(s)} are the eigenvalues
of H(s) for all s ∈ I. Moreover, according
to [30], section II.6.2, there is a unique set
of associated rank-one projectors Pλ0(s), . . . , PλN−1(s)

which are analytic over I. In particular, given
assumption (A3) and as H(s) = HR(ω(s)) for s ∈
{0, 1}, we have (λk(0), Pλk(0)) = (λR

k (0), |k〉〈k|) for
all k and {(λ0(1), Pλ0(1)), . . . , (λN−1(1), PλN−1(1))} =
{(λR

0 (1), |0〉〈0|), . . . , (λR
N−1(1), |N − 1〉〈N − 1|)}. Note

however that, unlike for theorem 1, the pairwise
correspondence between elements of the latter sets is not
obvious a priori, because here eigenvalues of H(s) do
not remain distinct on [0, 1]. A second difficulty is to
assess how the system’s state evolves when eigenvalues
become degenerate. This second part is answered by the
adiabatic theorem without gap condition. Introduce, as in
theorem 1, the adiabatic Hamiltonian Ha,0 and the
adiabatic propagator Uε

a,0, given by (19) and (20)
respectively with k = 0. Then by construction
Uε

a,0(1)|0〉〈0|Uε
a,0(1)† = Uε

a,0(1)Pλ0(0)U
ε
a,0(1)† = Pλ0(1).

The adiabatic theorem states that ∃ C such that

‖Uε(s)|k〉〈k|Uε(s)† − Uε
a,0(s)|k〉〈k|Uε

a,0(s)
†‖ � C

√
ε

(24)

for all |k〉 ∈ {|0〉, . . . , |N − 1〉}. Thus the actual system
adiabatically follows the analytic Pλk(s), from Pλ0(0) =
|0〉〈0| up to Pλ0(1) in particular.
Step 2: we now compute Pλ0(1). Define a small interval
Imn = [τ o

mn, τ
f
mn] ⊂ [0, 1] around each point s(m, n)

such that all Imn are disjoint. If A(s(m, n)) �= 0, then,
as shown in theorem 1, H(s) is non-degenerate for all
s ∈ Imn, such that for any j, k with λj (τ

o
mn) < λk(τ

o
mn)

we have λj (τ
f
mn) < λk(τ

f
mn). On the other hand, if we

take A(s(m, n)) = 0, then two eigenvalues intersect at
s = s(m, n) and the analytic branches cross so that their
order changes as stated in lemma 2(b). To avoid separate
treatment of limit cases, we define s0 = 0 and sN = 1.
Now by construction:

• λj (0) = λR
j (0) for all j ∈ N

N−1
0 .

• For k ∈ N
N
1 , λR

0 (s) is the kth smallest eigenvalue of
HR(ω(s)) when s ∈ (sk−1, sk).

• As long as A(s0) = · · · = A(sk−1) = 0, that is
for k � N − p, λ0(s) follows the same crossings as
λR

0 (s); therefore it is the kth smallest eigenvalue of
H(s) when s ∈ (sk−1, sk).

• For s > sN−p−1, we have A(s) �= 0 so the λk(s)

keep the same order, i.e. λ0(s) remains the (N −p)th
smallest eigenvalue of H(s).

• In particular for s = 1, from (13) we identify λ0(1) =
λR

N−(N−p)(1) = λR
p (1), such that Pλ0(1) = |p〉〈p| by

uniqueness of the spectral decomposition. ��

Remark 2. To apply the adiabatic theorem [13], corollary 2.5,
it is sufficient to have Pλ0(s) ∈ C2([0, 1],HN). However,
a condition like H(s) ∈ C2([0, 1],HN) does not ensure the
existence of Pλ0(s), . . . , PλN−1(s) ∈ C2([0, 1],HN), see [30],
example 5.3. It is only for analytic H(s) that we can
guarantee analytic Pλ0(s), which then in particular belongs to
C2([0, 1],HN).

Proof (of corollary 1). The arguments are the same as
in the proof of theorem 2. We concentrate on tracking
the analytic eigenvalue branches λ0(s), . . . , λN−1(s) of H(s)

to establish their pairwise correspondence with eigenvalues
λR

0 (s), . . . , λR
N−1(s) of HR(ω(s)) at s = 1. We prove the

result for p < N − l − 1; the case p > N − l − 1 is treated
similarly, while p = N − l − 1, implying Iω

lp = ∅, is the case
covered by theorem 1. Denote by s1 < · · · < sN−l−p−1 the
elements of Iω

lp, and s0 = 0, sN−l−p = 1.
The algorithm constructs Iω

lp such that the (l + d)th and
(l + d + 1)th smallest eigenvalues of HR(ω(s)) become equal
at sd , for each d ∈ N

N−l-p-1
1 . Taking A(sd) = 0 implies

H(sd) = HR(ω(sd)) so the same eigenvalue equalities hold
for H(s) at s = sd . Moreover from point (c) and lemma 1 all
eigenvalues of H(s) remain distinct for s �∈ Iω

lp. Therefore the
analytic eigenvalue branch λl(s), starting with λl(0) = λR

l (0),
exactly evolves through crossings at s1, . . . , sN−l−p−1 such
that it is the (l + d + 1)th smallest eigenvalue of H(s) for
s ∈ (sd, sd+1). In particular, λl(1) is the (N − p)th smallest
eigenvalue of H(1) = HR(ω(1)), which from (A2) means
λl(1) = λR

p (1) such that Pλl(1) = |p〉〈p|. ��

7. Summary and discussion

This paper shows how adiabatic passage can be applied to a
quantum ladder system to achieve permutations of populations
on the ladder levels with a single laser pulse. We explicitly
propose control inputs whose precise functional dependence
on time is not important as long as they satisfy a few key
features, most notably annihilation or not at specific times.
This makes our strategy robust against multiplicative input
disturbances. Another important advantage of our adiabatic
strategy is its ability to simultaneously control an ensemble of
systems with different dipole moment values.

Theorems in this paper provide a proof of concept in
idealized situations. Several practical issues deserve a more
quantitative investigation in future work. Probably the most
important aspect is to characterize precision of the adiabatic
approximation as a function of ε. Indeed, for small ε the
actual control time t = s

ε
gets long; this further implies that,

at a constant power A2(s), the energy given to the system gets
large. Beyond performance requirements, this also invalidates
our model at infinitesimal ε (e.g. regarding finite lifetime
of the levels). Although orders of magnitude are given for
the adiabatic limit, variations in the proportionality constant
can lead to significant discrepancies. Investigating them, as
well as ‘optimal paths’ minimizing non-adiabatic losses [31],
could yield guidelines for choosing amongst several possible
‘eigenvalue crossing designs’. Both precision of adiabatic

11



J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 154017 Z Leghtas et al

approximation and modelling assumptions (e.g. RWA) also
limit the range of ‘ensemble’ properties in practice.

It may appear surprising at first sight that two different
evolutions are selected just by taking A(s) = 0 or A(s) �= 0 at
a precise instant s. The elucidation is that this dichotomy only
holds at the limit ε → 0+. For a given ε, the larger the |A| in the
neighbourhood of s = s, the more the evolution differentiates
from the A(s) = 0 case. Nevertheless, for small ε, the
relevant neighbourhood around s for selecting population
transfer or not indeed gets small (from there experimentalists’
denomination ‘rapid adiabatic passage’). Our scheme might
therefore allow selective population permutation as a function
of {�0, . . . ,�N−1} on an ensemble of systems, in a scheme
resembling resonance selection. Take A(s) = 0 for s ∈ Iω

of a nominal system. If a system has detunings very close to
nominal, then two of its λR

k (s) cross at a point s̃ close to s,
where A(̃s) ≈ 0, such that for moderate ε its final state will
be close to the adiabatic result of the nominal system with
A(s) = 0. If a system has detunings more different from
nominal, then all its crossings of λR

k (s) occur at points where
A significantly differs from zero, and with moderate ε its final
state will be closer to the adiabatic result of the nominal system
with A(s) �= 0. A quantitative statement of this idea requires
further investigation.
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