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Hamiltonian Identification Through Enhanced
Observability Utilizing Quantum Control

Zaki Leghtas, Gabriel Turinici, Herschel Rabitz, and
Pierre Rouchon

Abstract—This note considers Hamiltonian identification for a control-
lable quantum system with nondegenerate transitions and a known initial
state. We assume to have at our disposal a single scalar control input and the
population measure of only one state at an (arbitrarily large) final time T.
We prove that the quantum dipole moment matrix is locally observable in
the following sense: for any two close but distinct dipole moment matrices,
we construct discriminating controls giving two different measurements.
This result suggests that what may appear at first to be very restrictive
measurements are actually rich for identification, when combined with well
designed discriminating controls, to uniquely identify the complete dipole
moment of such systems.

Index Terms—Hamiltonian identification, observability proof, quantum
control.

[. INTRODUCTION

Quantum control has been receiving increasing attention [1] and one
of its promising applications is to Hamiltonian identification [2] by
using the ability to actively control a quantum system as a means to
gain information about the underlying Hamiltonian governing its dy-
namics. The underlying premise is that controls may be found which
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Fig. 1. A good control € has three components (inspired from Ramsey in-
terferometry) to enable the identification of ;). The field €; is defined over
[0, 71] (analog of first Ramsey pulse) to steer the known initial state |¢) to
[£1) = |I): |I) = U(71,0)]|d). The field e, is defined over [2, T] (analog
of second Ramsey pulse) is such that |f) = U(T, 72)|¢2) where |¢o) =
U(ra,71) ((|7) + ¢|k))/+/2) and the propagator U (72, 71) corresponds, for a
long interval 7o — 71, to a large number of Rabi oscillations with the control
€ cos(wj, (T — 71)) resonant with the |{) « |k) transition.

make the measurements not only robust to noise but also highly sen-
sitive to the unknown parameters in the Hamiltonian. Hence, although
the performance of laboratory measurements may be constrained, the
ability to control a quantum system has the prospect of turning this data
into a rich source of information on the system’s Hamiltonian.

In this note, we consider the problem of identifying the dipole mo-
ment (which is assumed to be real) of an N -level quantum system, ini-
tialized to a known state (ground state), from a single population mea-
surement at one arbitrarily large time 7". We suppose an ability to freely
control the system with a time dependent electric field e(¢). The mea-
surements are obtained by: (i) initializing at time ¢ = 0O the system’s
state at a known state |7}, (ii) controlling in open loop and without mea-
surement the system with an electric field €, (#) for ¢ € [0, 7] where
T > 0, and (iii) measuring at final time 7" the population of one state
| 7). This may be repeated for many controls (e ). We prove the ex-
istence of controls which make the identification from one population
measurement a well posed problem (theorem 1). These controls have a
simple physical interpretation in analogy with Ramsey interferometry
(see Fig. 1).

The perspective above combined with control theory is motivated
by three practical arguments. First, measuring a state population at one
time 7" is a technique which can have a very high signal-to-noise ratio
(~ 100). Second, technological progress with spatial light modulators
(SLM) permits generating a broad variety of controls in the laboratory.
Third, ultrashort pulsed fields can be well measured in the laboratory
[3]. Hence, we are able to design a variety of precisely known control
inputs.

Le Bris er al. [4] prove the observability of the dipole moment when
the population of all states are measured over an arbitrarily large in-
terval of time. Algorithms to reconstruct the dipole from the measured
data were proposed using nonlinear observers [5], [6]. A different set-
ting is considered in [7], [8] where it is supposed that one can prepare
and measure the system in a set of orthogonal states at various times,
and the available data is the probability to measure the system in a cer-
tain state when it was prepared in another; Bayesian estimation is used
to reconstruct the energy levels, the damping constants and the dipole
moment from the measured data. We consider here the less demanding
case where the only available measurement is the population of one
state at one arbitrarily large time, and the initial state is known and co-
incides with the ground state.

The note is organized as follows. In Section II we state the main
result in Theorem 1, and Section III gives the proof of the Theorem
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and an important lemma on which the main result is based. Finally
concluding remarks are presented in Section IV.

II. OBSERVABILITY OF THE QUANTUM DIPOLE MOMENT

A. Problem Setting

We consider a quantum system in a pure state described by
the wave function |[¢) € S. Here S is the set of N dimensional
complex vectors of unit norm. The system interacts with an elec-
tric field (the real control input) ¢ € &7 for some T° > 0 with
& 2 {f:]0,T] — R|f piecewise continuous}. For a given
control € we measure the population of the state | ) at time T denoted
as P;¢(e). We denote by Hy the free Hamiltonian (Hermitian matrix)
and by p the dipole moment operator, also a Hermitian matrix. The
initial state |¢) and the measured state | f) are eigenvectors of Ho. We
consider a semiclassical model for the light-matter interaction, and the
dynamics of |¢/) are given by the Schrodinger equation

B 10(1) = (Ho = () [0(1)
[0(0)) = [i),  Pis(e) = [{fl(T))|* . M

For all T > 0, we suppose that we can create any field ¢ € &7 and
that we can measure P;s(¢). For M different fields {e1,..., e} we
can collect the measurements {P;f(€1), ..., P;s(enr)}. Through (1),
P is a function of ;¢ and a functional of €, and when necessary this
explicit dependence will be written as P (e, 1). The aim of this note
is to explore the feasibility of estimating the dipole moment ¢ from
the measured data { P (€1 ), ..., Pif(enr)} using well chosen controls
{e1,...,€en}.Below, Pis(e, ) refers to the measurement achieved on
the real system using a control €, and for any /&, Pis (e, i) is the esti-
mated measurement which is obtained by simulating system (1) with
the control € and coupling fi.

B. Main Result

For all & < N we denote |k) as the eigenvector of Ho with asso-
ciated eigenvalue E'.. Throughout the note, all matrices are written in
the basis (|1),...,|IN}). The initial and measured states correspond
to some indexes 7, f € {1,...,N}. Forall k&,] < N we specify
o'® 211y (k| + |k) (I]. We define

M £ Span{ot"\k,1 < N with Tr (uaik) # 0}

with Tr being the trace operation. When all nondiagonal elements of p
are nonnull M = dim(M) = (N(NN — 1))/2. The main result is as
follows.

Theorem 1: Consider a real symmetric matrix jt with zero diagonal
entries and a real diagonal matrix Ho with nondegenerate transitions.
Suppose that the system state in (1) is controllable. Then for any posi-
tive constant « there exists a time T > 0 and M fields (e1,...,en) €

Er™ such that the cost function

M
J: M3 — Z (Pif(er, i) — Pif-(ek,//,))z
k=1

is in C*(M, R) and locally o-convex! around .

C*(A, B) denotes the set of k times continuously differentiable
functions defined over A with values in B. In the Appendix we pro-
vide the definitions of controllability and a matrix with nondegenerate
transitions. Here and throughout this note, the norm of matrix p, noted
||12]] refers to the max norm.

IThe smallest eigenvalue of the Hessian V2.J (1) is larger than .
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A direct consequence of Theorem 1 is the local observability of the
dipole moment:

Corollary 1: Under the assumptions of Theorem 1, the dipole mo-
ment is locally observable in M.

Proof: Take o« > 0. Theorem 1 implies that there exists a time

T > 0and M fields (e1, . ..,en) € & such that the cost function .J
is C2(M, R) and locally c-convex around j. Hence there 3r > 0 such
that forall i € M with ||t — p|| < rand i # p, J(ji) > 0,and hence
there exists € € {e1....,enr} such that Py (e, i) — Pig(e, ) #£ 0.0

Remark 1: The local a—convexity is a property stronger than the
mere possibility to identify the dipole matrix. It states that the distinc-
tion between a dipole candidate [i and the true dipole 1 can be ob-
served (through the measurements aggregated in J) to first order in
the distance ||pt — fi||. This first-order dependence of the measurement
P s with respect to the dipole ji is addressed in more detail in lemma
1. For well chosen controls, the J function has a very simple shape
around i and a simple gradient algorithm could be used to identify it.

The eigenvalues of Ho are commonly measured through spec-
troscopy and can be found in reference tables [9] with precisions of
order 10" . The result of Theorem 1 is also relevant for the problem of
discriminating between two molecules with the same free Hamiltonian
and different effective dipole operators. In that framework, & and p
would be the dipole operators of these two molecules (as opposed to
one estimated and one true dipole, as considered in this note), and
the aim is to find controls which produce different data sets for these
two different but similar quantum systems. This was experimentally
accomplished in [10] where a genetic algorithm is used to find these
discriminating controls. A complementary theoretical controllability
analysis can be found in [11].

PROOFS

C. Existence of Discriminating Controls

We denote p' = (1/]|¢]|)p the normalized dimensionless dipole
moment operator, 5, = Tr (1'atF) and (OP;y/0pix)(€) the partial
derivative of P;(e) with respect to pj;,. Theorem 1 is based on the
following lemma.

Lemma 1: Suppose that ju is real, symmetric and has only zeros on
its diagonal and Hy is real, diagonal, with nondegenerate transitions.
Suppose system (1) is controllable. Then for all (1, k) with juu # 0,
there exists & > 0 such that, for all £ €]0,&], exist T > 0 and
€ € &p satisfying

* (OPip/Opi)(e) = 1/26 + O(1)

o Wm,n} # {L.k} with prmn # 0, (0Pif [0y )(€) = O(1),
where O(1) corresponds to zero-order terms with respect to & around
0t.

Proof of Theorem 1

To each pair of integers (I, k;,), 1, < k, such that Tr (;L'ai‘”k") +
() we associate a unique index p € {1,..., M}, and we define o2 2
o™ along with i & Tr(p'ok).

According to lemma 1, 3¢ > 0 such that V¢ €]0,&],
3Ty,...,Tu and (e1,...,€m) € Epy X --- X Er,, such that:
@ Vp € [1 @ M] (OP;/oul)(ep) = 1/2¢6 + O(1) and (ii)
Vp' # p (OPis /0, )(ep) = O(1). We take T = max(Th, ..., Tw)
and for all & € {1,...,M} we extend the definition of ¢, from
[0, T%] to [0, T] by taking e, (¢) = 0 for all ¢ €]T}, T]. We will use
J : M — R defined by:

M
J(p) = Z (Pif(ers i) — Pig(en, 1))>.

k=1
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ForafixedT > Oande € Ep, since it — Pis(e, /i) isinC
J(j1) is in C* (M, R). We find

9% OPf
O;ch?u Z o, ko b

2(MLR),

aPL
B [( €ks 11)
p’

so that forall p € {1,..., M} : (8°T/du,*) () = 1/4€* + O(1/€)
and when p # p' (9°J/0p,0p, ) (n) = O(1/€). We have:

2T(p) = (1/4€%) (I 4+ O(€)), where V2J(p) is the Hessian of .J
at p and I is the identity matrix. The smallest eigenvalue of V2.J (1)
scales as (1/4€2)(1 + O(€)), hence by taking ¢ small enough it can
be made larger than « thereby reaching the conclusion above. ]

Proof of Lemma 1

We define the dimensionless time scale T £ (1/1)||Hol| * and also

(1
£ (1/h) ||Ho|| T For two times 7, 7' € [0, T] we define the propa-
gator U (7', 7) such that [¢(7")) = U(7', 7) [¢»(7)}. Rewriting (1) for
U(r,0) we obtain

[ (1,0) = m( —e(r)wU(r,0)
Piy(e) =|{(fIU(T,0) &) [*,U0,0)=1. ()

The proof of lemma 1 has two parts I and II separately treated below.

Part I: Take two times 71,72, 0 < 71 < 72 < T. We can write

(for any complex z we denote by Z its complex conjugate): P;¢(e) =
zZ where z = <f| U (T, Tz)U(lz (B )[/ (7’1 s 0) | >

Denote forany m,n = 1,..., M : wh, £ (Ewm — E,)/||Hol and
consider the control defined on [71, 72]
e(r) = ecos(wip (T — 11)) 3)

where ¢ is a small strictly positive real parameter. Take & =

[l14]l /|| Hol|- The only remaining degree of freedom in the control

over [T, 72| is &, which can be taken arbitrarily small. We define

HD = (1/||H0||)H0 and wy,,, = (m| Hy |m) — {n| H} |n). Note that
e W - We have [12]

u) =

a el
—U(r,7m) =1
A, VT H |l

1:7(1—27 T1)

X /T2 e(T)UT(T, )R U(r, m)dr . (4)

T1

We now rewrite (2) and (4) for the control given in (3) on the time
interval [71, T2]

a . / ’ N

LU () = (B — costelu(r = m U (m) 9)
9 . -
mL(Tg,Tl)_zfﬂ(Tg,n)

X/Tzcos(u};k (r—m ))UT(T, Tl)(r,ikU(T, 71 )dT.
(6)

The goal is to show that (8/8uj;,)U (72, 71) can be made arbitrarily
large” while (8/0u},,,)U (72, 1) stays bounded. Note that all the
terms in the integrand of (6) are bounded, and a rough estimate of the
norm of (8/8 1)U (72, 71) gives a quantity proportional to (72— 71 )£.
Hence, we take 72 — 71 = 1/&2, implying the need to have expressions
for U (7, 71 ) over a time scale on the order of 1/52. To this end we state
lemma 2 which gives such an approximation.
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Lemma 2: Consider (5). There exists a Hermitian matrix K and
&o > 0 such that, for any & €]0, &, we have
o2 K (r—1)

—17T’(T—T ) 7(5—“';1"
sup U(r,m)—e "0 Vehs™2

76[71,T1+£%]

= 0(&).

We continue with the proof of Lemma 1 and will come back to
Lemma 2 in Section III-D.
Using the expression of U (7, 7 ) given in lemma 2, the integrand in
(6) is
o oo\ tkyr
cos(wip (1 — i ))U (7, 71)oy U(T,71)
- e,*’(f(“z/k/z)a.lrk*GZl{)("”'1)(cos(w,fk(r — Tl))e,lﬂé(rfrl)

0_?‘,@—1776(7’—7’1))C’(g(ll;k/z)”;k+£2K)(T_T1) =+ ()(E)

In order to compute (6), we need the following result:

’ ’
COS(M}]{A»(T _ Tl))e,lﬂo(riﬁ)aik672H0(T*T1)

_ lo_llc
2 T

1. g
+ 5 sin (2w (1 — Tl))"zr[/k )

+ % cos(Qw;L,(T—T1))U£~k

where we denote oy = 2 |1) (k|—¢ |k) (I].In(7), the terms oscillating
at frequency 2wy, independent of ¢ will only contribute to O(£) in (6).
We now focus on the contribution of the term with ¢ in (6) which
calls for (see the Appendix) V7

e~ /Do FHE ) (r=r1) k(& /)7, 2K (r=71)

=0+ 0. ®8)

Introducing (8) into (6), we find

0

({)‘“M —U (T') Tl) =

U (12, 11)

(%3
2

From now on, we take 7, = 7, + 1/ 52 and obtain

%)
Oy,

Lol 0(1) + (r2 = )O() ).

—U(re,71) = U (72,71) < ”" + ()(1)) 9)

2"
We define |1 ) £ |1} and |12) £ (1/v/2)U (72, 71)(|I) +1 |k)). Since
the system is controllable there exists a time 7y and a field e; € &,
such that U (71, 0) |[¢) = |1}, and there exists a time T and a field e,
defined over [z, T] such that UT(T, 72) |f) = |¢2). Since the state
space is compact (here it is a sphere), we know that if the system is
controllable, it is controllable in bounded time, and with bounded con-
trols (see [13, Th. 6.5]). Hence, T — 7= can be chosen bounded for all
€. Therefore (9/0uu)U (0,71 ) and (8/0pix )U (72, T) are bounded.
Thus, we have

9
Opiy,

Pip(e) = 2R({fIU(T, 72) 5= U(72, 1)U (71, 0) |i)

0
Opiy,
GO (0, 00 (72, )T (T, 72) 1£)) + O(1).

We now utilize U(71,0) |i) = |¢1) and UT(T,TQ) |f) = |[¢=) where
[¢1) and |¢2) are defined above, and replace (/9 )U (72, 71) by
its expression in (9) to find: (8/8uj;, ) Pir(e) = 1/2¢€ + O(1). This
expression holds for the control defined as (see Fig. 1)
e1(T), if 7 € [0, 7]
”Houﬁcos(w;k(r — 1)), ift Elm,mf .

[Tl
(), if 7 € [12, T]

e(r) =

(10)
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Part II: ' We now need to prove that (8/8pi,,, ) Pis(e) = O(1)
for {m,n} # {I,k}, where ¢ is the control found above in (10). As in
(6), we have

0
O

Ulra, m1) = 16U (12, 71)

X / i cos(wiy (T — Tl))UT(T, o " U(r, m)dr  (11)

1
and again the result of lemma 2 is employed. Equation (11) calls for
‘H(/)(T—ﬁ) mn _’Hé(T_Tl)

mn)(T - ’1)) .

mn.

2 cos(wi (T — 71))e
= cos((wii -
— sin((Wik — Wi ) (T — T1))oy
+ LOb((“ulk + "‘Jnm)(T - Tl)) 0,
+ sin((wip 4 Wi ) (T — 711))oy " (12)
Considering that Hy has nondegenerate transitions (see definition in
the Appendix) implies that w;;, — wl,,, # 0 and wj, + wi,, # O.
As the expression in (12) oscillates at frequencies independent of ¢, it

therefore contributes to O(€) in (11). Hence, for 7 — 7 = 1/&% we
can directly conclude that (9/8 4, ) Pi(€) = O(1). O

Proof of Lemma 2

This proof relies on three consecutive changes of frame that aim to
cancel the oscillating terms of order 0 and 1 with respect to £. We then
derive a specific form of the averaging Theorem (see [14, Th. 4.3.6]
for a general form of the averaging theorem) For the sake of clarlty
and with no loss of generality, we take 7y = 0 and note U (1) =
U(/ 1). Equation (5) may be written in the interaction frame U (7) £

zH U ( 7_)

%sz(r)zz£<“" o +_H,(T>) Ur(r)

where

0 1 o ’
a—THJ(T) =3 Z u",,me,l( Wt mn )T [ (n]

(m )2k D)
>

L1
2
() £(LK)

W—w]Fwr, )T

[rn) {n|

1
Hmn€

and the average of H; is zero. The average of a time depen-
dent operator C(7) is deﬁned as follows (see [14, def. 4.2.4]):
C = limp_je (1/6) fo 7)dr. We now take Up(r) =
(I — «£H;(7))U(7). Since (O/OT)HJ is almost periodic2, then
H; is also almost periodic and hence bounded for all 7. Hence,
there exists & > 0, V€ < &, I — «£H(7) has an inverse and
(I—H (7)) P =T+ &H (1) + O(&?). We find

8 Illk ok
ar ()_7< 2 7

—i€? <“’k [Hi(7), 0]+ Hi(r )O?THI(T))+O(£3)) Ur (7).

Notice that, with K = —:H;(8/87)H, independent of ¢ and K (1)
almost periodic with zero average, we also have

l’lk[H (1), JLH_H,(T) Hf(T)—l(K—l- G%K(T))

2Can be written as Y7, ek A,
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It is important to note that

% CHi=0= HIOQHI + <00 HI) Hr =K - K.
Hence K = it is Hermitian.

We now take U7 (7) (I — 42K (7))Uj(7). Since K(7) is
bounded for all 7, then for a sufficiently small £, I — 262K (7) has an
inverse and (I — 162 K(7)) ™" = I + 12K (1) + O(¢"). U} satisfies
the following equation:

0

a—TU;’(T)zz,(gﬂa;’wﬁﬁ#()(g})) Ur(r)  (13)

2

and we define U,, to be the solution to the averaged dynamics
Uau(0) = 1)
0 7 lm
Ul =1 (¢

1+ET> lau(T) . (14)

We can directly solve (14): U (7) = (Sl /DK ) T gy
tracting (13) from(14), we find, using Gronwall’s lemma, that for all
T < 1/€2 onehas U} (1) = Uaw(T) +O(£). Also note that to go from
Ur to U we have used two consecutive changes of variables which
are close to the identity, hence, V7 U (7) = U;(7) + O(€). Finally,
since e*07 is an isometry, we have

U(r) = et 0T &y /2o e ) O(¢) for all T fi

III. CONCLUSION

Identification of the real dipole moment matrix is shown to be well
posed for a controllable finite dimensional quantum system with non-
degenerate transitions and using as measurements only one population
at a final time 7". The results also provide a theoretical foundation to
optimal discrimination experiments.

APPENDIX

Definition 1: We say that system (1) is controllable[15] if for all
[1), |2) € S there exists a time t and a control € € & such that for
[4(0)) = |¢1), (1) leads to |¢)(t)) = |¢2).

Definition 2: Let Ho and @ be N x N Hermitian matrices. We
denote E1, . .., En the eigenvalues of Ho and |1) , ..., |N) its corre-
sponding eigenvectors. We say that Hy has nondegenerate transitions
[16] if V(1. k) # (m,n), 1 # k and m # n, such that {I|n|k) # 0
and {m|p|n) # 0, we have E; — Ey. # E,, — E,,.

Definition 3: Take system (1). Let us denote M as the space to
which 11 belongs. We say that i is locally observable in M if there exists
r > 0 such that for all if € M with0 < ||ii — u|] < r and 4 # u,
there exists T > 0 and € € Ep such that Py (e, fi) # Piy(e, ).

Computation: Here, we compute

_ ()—‘i(E(;A;k/Z)o'ik-&—EzT()(T—T1)o_lkpi(E(u,l/k/Q)ai:k-&—£2T\’)(T—r1)
EY. e .

We have u};, # 0 and ¢'F 4+ (2K /pj,) is Hermitian. Hence, there
exists a unitary matrix Iz and a real diagonal matrix A, such that

o+ EQK /uy) = PgAgPT The function € € [0,&] — o2F +
5(23 /14, ) is analytic, therefore the eigenvectors of o + £(2.K /uj)
can be continued analytically as a function of £ (see [17, Th. 6.1 in ch.
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II, Sec. 6 section 1 and 2]). Hence, Pr = P, + O(&) where P, is such
that PJJL’“PO = o!¥ is real and diagonal. ¢'% = |1} (I| — |k) (k|. We
find Vr: S (7) = olF + O(€), where O(€) is a first-order term in &
and a bounded function of 7.
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Robust Control of Constrained Linear
Systems With Bounded Disturbances

Reza Ghaemi, Jing Sun, Fellow, IEEE, and
Ilya V. Kolmanovsky, Fellow, IEEE

Abstract—This technical note develops a novel robust control algorithm
for linear systems subject to additive and bounded disturbances. The ap-
proach is based on the constraint tightening method. While this problem
can be tackled using existing robust model predictive control techniques,
the proposed method has an advantage in that it is computationally efficient
and avoids the need to solve repeatedly an online optimization problem,
while the optimization problem solved at initialization is a simple linear
programming problem. The algorithm elaborated in this technical note
guarantees convergence to a minimal disturbance invariant set, and the ter-
minal predicted state constraint set is allowed to be larger than the minimal
disturbance invariant set. As an illustration, the developed algorithm is ap-
plied to constrained roll control of a ship operating in a wave field. Simula-
tion results show that the proposed approach reduces the ship roll motion
while the input and dynamic stall constraints are satisfied.

Index Terms—Model predictive control (MPC).

I. INTRODUCTION

In this technical note, we consider a control problem for constrained
discrete-time linear systems that are subject to bounded additive distur-
bances. Our goal is to provide a control method that enforces specified
state and input constraints in the presence of disturbances and steers
state trajectories to a given target set.

This problem has been studied employing invariant set methods (see
[1], [2] and references therein) and optimization based control strate-
gies such as model predictive control (MPC) [3]. In the MPC litera-
ture, one approach relies on sufficient contractivity of the open-loop
system [4]. MPC strategies in which a deterministic control sequence
is optimized, may result in a small domain of attraction hence another
approach has been proposed in which optimization is performed over
feedback policies [5]. However, optimization over arbitrary feedback
policies, in the presence of constraints, may be especially difficult.
As an alternative, affine feedback policies were employed where the
state feedback gain(s) are calculated off-line and optimization was per-
formed over constant offset terms [6]—[8].

Many robust MPC schemes are based on tightening the constraints
(on states and controls) over the prediction horizon. This method was
proposed initially in [9] as well as in [6], [10]-[12]. Based on con-
strained tightening approach, a robust MPC for nonlinear systems sub-
ject to bounded disturbances has been introduced in [13], that guaran-
tees convergence to an ellipsoidal disturbance invariant set. An alter-

Manuscript received January 09, 2011; revised June 22, 2011; accepted
March 14, 2012. Date of publication April 19, 2012; date of current version
September 21, 2012. This work is supported in part by the National Science
FoundationNSF ECS-0501284 and ONR N00014-05-1-0537. Recommended
by Associate Editor T. Zhou.

R. Ghaemi is with the Department of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA (e-mail: ghaemi@mit.
edu).

J. Sun is with the Department of Naval Architecture and Marine Engi-
neering, The University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
jingsun@umich.edu).

I. V. Kolmanovsky is with the Department of Aerospace Engineering, The
University of Michigan, Ann Arbor, MI 48109 USA (e-mail: ilya@umich.edu;
ikolmano @ieee.org).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2012.2192362

0018-9286/$31.00 © 2012 IEEE



