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1 Materials and Methods

1.1 Qubit fabrication

Josephson junctions and dipole antennas are fabricated on high-purity single-crystal sapphire in one single fabrication
step by electron-beam lithography followed by aluminum double-angle electron-beam evaporation. The two evapora-
tions deposit thin aluminium films with a thickness of 20 nm and 60 nm respectively. These layers are separated by
an AlOx barrier grown by thermal oxidation for 720 seconds in 2000 Pa static pressure of a gaseous mixture of 85%
argon and 15% oxygen.

1.2 Measurement setup

The state of the qubit is probed by measuring the qubit-state dependent cavity transmission using heterodyne detec-
tion. Fig. 1 is a block diagram of the measurement setup. Microwave signals for control and measurement transmit
through a coax cable with a 20 dB attenuator at 4 K and a 20 dB directional coupler followed by a 10 dB attenuator
at 25 mK. The cavity transmission at the output goes through two cryogenic isolators at 25 mK followed by a HEMT
amplifier with a noise temperature of 5 K at the 4 K stage. At room temperature, the transmission signal from the
cavity is further amplified by two low-noise room temperature amplifiers and is mixed down to a 20 MHz signal which
is digitized using a 1 GS analog to digital converter.

2 Full system Hamiltonian

The two cavities, one qubit system, can be described by the Hamiltonian

H
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in the strong dispersive limit of circuit QED. Where a/af, a,,/al,, b/bt the raising/lowering operators for the storage
cavity, the measurement cavity and the qubit. The Hamiltonian is calculated by treating the system as three coupled
harmonic oscillators and introducing the cosine term in the Josephson relation, using the ¢* ~ (b + b7)* term in the
Taylor expansion, as a perturbation [1]. Higher order terms (~ ¢%) are more than a factor of 1000 smaller for the
parameters of this experiment and can be safely neglected. The Hamiltonian in Eqn.1 of the main text can be recovered
from the above Hamiltonian by neglecting all but the lowest two levels of the qubit (b7b7bb = 0) and replacing b'b with
%(1 + 0.). Furthermore all terms ~ af a,, are zero as the readout resonator always stays in the ground state during
the Kerr evolution.

The first three terms in the above Hamiltonian describe each mode as a harmonic oscillator with w, the resonance
frequency for the storage cavity, w,, the resonance frequency for the measurement cavity and w, the ground to first
excited state transition frequency for the qubit. The next three terms describe the anharmonicity of each mode, the
anharmoncity of the storage resonator K, the anharmonicity of the measurement cavity K, and the anharmonicity of
the qubit K. The last three terms describe the state dependent shifts of each mode due to the state of the other two.
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Figure 1: Block diagram of the measurement setup.

This means that the transition frequency of a resonator not only depends on the state of the qubit but also on the
state of the other cavity. In our system all of these state dependent shifts are much bigger then any decay rate. The
state dependent shift of the storage cavity to the qubit is x, of the measurement cavity to the qubit is x4, and of the
storage cavity to the readout cavity Xcm. The values of all parameters determined by spectroscopy and a comparison
to the theory values obtained using finite-element calculations for the actual geometry, combined with “Black-Box”
circuit quantization [1] are given in Table 1.

Table 1: Comparison of the experimentally obtained and predicted values for the frequency and anharmonicity of each
mode as well as the state dependent shifts between the modes.

Exp. (MHz) | Th. (MHz) | deviation (%)
we/2m 7850.3 7890 <1
we/2m 9274.7 9372 1
W /2T 8256.4 8336 1
K,/21 73.4 72 2
K/2m 0.325 0.25 30
Ko /27 3.8 3.7 3
X/2m 9.4 8.2 15
Xqm /27 29.5 29.5 <1
Xem /2 9.45 2.1 16

3 Photon number state selective pulses

In order to measure the state of the storage cavity, we must project the cavity onto a photon number (Fock) state.

From Eqn. 1, we can see that the qubit transition frequency is dependent on the photon number state of the resonator.

As long as the frequency shift, x, is much larger than spectral width o of the interrogation pulse, a photon number

state selective pulse X" can be performed. In this experiment, x /27 = 9.4 MHz and o/27 = 2.6 MHz, making a pulse
2

selectivity of 1 — €7 > 0.99. This is essentially a CNOT [2] operation, with the qubit as the target, conditioned on
the photon number in the cavity. A similar scheme to reconstruct the state of a cavity or phonon mode was discussed
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in the context of cavity QED and ion traps [3, 4]. This process can be described by

oo oo
xm
Weavity) @ [Ygubit) = D cn |n) @ 1g) == D cn|n) @ |g) + cm|m) @ e) . (2)
n=0 n=0
n#m

Where the state of the cavity is described as a sum over the Fock states |n) with ¢, the complex amplitude. This
procedure entangles the qubit and cavity thus a measurement of the qubit state will project the cavity onto the m*
photon fock state. The probability of finding the qubit in the excited state is then given by p,, = ¢2, which is exactly
the probability of finding the cavity in the state |m).

4 Qubit state readout and Cross Kerr dependence

The state dependent shift between the two cavities, or Cross-Kerr, enables us to readout whether one cavity is in
the ground state or not by probing the other cavity exactly like reading out the qubit state. This also means that
the qubit cannot be readout independently of the state of the storage cavity so both, qubit and storage cavity, will
contribute to the readout voltage. In the experiments we are using the Jaynes Cummings readout [5]. The readout
voltage in an experiment measuring (), for the state

)
U=cpnlm®e)+ ) caln)®|g) (3)
n=0
n#m
is given by
)
‘/emp = pm‘/e,m + Z pn‘/g,n- (4)
7?;7%

with p, = c2 the probability of finding the n-photon Fock state, Vj ,,(Ve,,) the readout voltage for the ground (excited)
state of the qubit with the resonator in the n-photon Fock state. To remove this effect in our measurements, e.g.
determining whether the qubit was excited by a photon number state selective 7 pulse, we always perform a control
experiment without a photon number selective 7 pulse applied to the qubit. The readout voltage in this control
experiment is given by

oo
‘/control = anI/g,nA (5)
n=0
Subtracting the two measured voltages from another removes the effect of the resonator excitation

Vezp - ‘/control = pm(‘/e,m - Vg,m) (6)

This gives us an effective voltage ranging from 0 for the ground state of the qubit to Ve ., — V; ,, for the excited state of
the qubit. This procedure was applied to measure the photon number probabilities for displacing the ground state and
all @, () in the main text. Fig. 2 shows a line cut from a = 0 to 4 of the measured Qo, @1, Q4 for the ground state
before subtraction of the control experiment which is also shown in the figure. Subtracting the background experiment
from the measured Fock state probabilities leads to the data shown in Fig.3b. This figure shows furthermore that
our readout is linear, which means that V., — Vem = Vg0 — V0, as the fit to data is given by a simple Poisson
distribution without adjusting for any amplitude correction. This means, that our readout voltage for measuring Q,,
is given by

‘/ezp - ‘/control = pm(‘/e,o - Vg,O) (7)

with Vg o < Vo assuming the qubit is initially in the ground state (see section 7).

5 Determining the cavity anharmonicity

The cavity anharmonicity is measured by spectroscopy using a 50 us pulse to excite the cavity. The cavity excitation
is measured by mapping the population left in the ground state to the qubit using a photon number state selective 7
pulse. The 7 pulse on the qubit will be successfull only when the cavity is in the ground state after the spectroscopy
pulse. Spectroscopy on the cavity for a varying spectroscopy power is shown in Fig.3a. For the lowest power the cavity
is only excited on the |0) — |1) transition at a frequency of 9.2747 GHz. As the power is increased different transitions
appear in the spectroscopy. These transitions are multi-photon transitions from |0) to |n) with n = 2,3 which means
the separation between the peaks is given by 0.5 K/27 = 163 kHz, the Kerr nonlinearity of the cavity. The data were
fit using a sum of Lorentzian peaks.
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Figure 2: Cross Kerr readout voltage subtraction. a, Readout voltage for the selective pulses X' applied to
n=20,1,4 (e,e,e) for a 10 ns displacement with amplitude || of the cavity ground state. e is the control experiment
without applying a photon number selective pulse. This shows, that due to the Cross-Kerr we get higher and higher
readout voltages for more average photons in the cavity without exciting the qubit. Subtracting the background
experiment from the measured Fock state probabilities leads to the data shown in Fig.3b.

6 Cavity displacement & displacement calibration

The cavity is displaced using a 10 ns pulse resonant with the |0) — |1) transition of the cavity creating a photon number
probability distribution given by a coherent state. We can measure the probability of finding the Fock state |n) by
applying a photon number state selective 7w pulse to the qubit and measure the qubit excitation. The displacement
voltage € applied to the cavity is calibrated in units of the average photon number in the cavity 7, or rather the
corresponding displacement amplitude |a| = /A, by fitting a Poisson distribution P, (e) = () e(¢/ 29? /n), with
the normalization constant Ae, to all measured photon number probabilities simultaneously. The probability of
finding the Fock states n = 0...7 for a displacement with amplitude |«| of the ground state can be seen in Fig.3b.
The probabilities closely follow the expected Poisson distribution. This demonstrates that it is possible to create a
coherent state despite the cavity non-linearity as long as the displacement pulse has a large enough spectral width.

7 Excited state qubit population and negative values in the Hussimi
Q-function.

We found, that the qubit has a 10% excited state population p. which has been observed in other 3D superconducting
qubits [6, 7] but is not yet completely understood. In our case this excited state qubit population leads to negative
values in the Hussimi Q-function, as can be seen in Fig. 3a of the main text. These negative values are a result of the
measurement procedure described in section 4. At the start of the experiment we create the combined qubit cavity
state

p = (pglg) (gl + pe le) (e]) @ |B8) (] (8)

With py(pe) the probability of finding the qubit in the ground(excited) state. The resonator state for the qubit in the
excited state evolves at a rate different by x compared to the ground state qubit resonator

p=1gl9) (gl ®[B) (B + pe le) (| @ |eX'B) (eXB] . (9)

Here we completely neglect the evolution due to the Kerr effect as it happens on much slower timescales.For an analysis
displacement D(«) that brings neither of the coherent states back to the ground state but e.g. displaces them even
further we get the state

p =g l9) (gl ®[B1) (Br| + pe le) {e] @ |B2) (B2] (10)

with |81) = D(a) |8) and |B2) = D(«) [e'X'8). Applying a state selective pi pulse X9 does not change the state such
that this experiment and the control experiment omitting the 7 pulse will result in the same readout Voltage. This
means that Qo(a) = 0 still corresponds to 0 readout voltage in the presence of inital excited state qubit population.
For an analysis displacement that brings the state ‘eixt6> to the ground state |0), followed by a state selective pi
pulse X0, we will flip the excited state qubit to the ground state while leaving the ground state qubit untouched and
displacing |3) to a new |3’)
p=lg) (gl ® (pg|B") (B| + pe |0) (O)). (11)

When we now subtract the control experiment we find a readout voltage which is negative

Vneg = 7pe(‘/e,0 - th,O) <0 (12)
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Figure 3: Cavity spectroscopy for varying spectroscopy power and displacement calibration. a, The cavity
excitation is measured by mapping the population left in the ground state to the qubit using a photon number state
selective 7 pulse. For the lowest power (o) the cavity is only excited on the |0) — |1) transition. As the power is
increased (¢ — « — e — e — o) different transitions appear in the spectroscopy. These transitions are n-photon
transition from |0) to |n) with n = 1,2, 3 labeled from the right peak to left. The separation between the peaks is
given by 0.5 K/2m = 163 kHz. The dashed lines are fit to the data using a multipeak Lorentzian function. b, Photon
number probability of the Fock statesn =10...7 (o,0,0, 0, 0,0 0 o) for a 10 ns displacement with amplitude |a| of the
cavity ground state. The axes were scaled by fitting a Poisson distribution with two free fit parameters to all seven
Fock state populations simultancously. The dashed lines are given by a Poisson distribution P(|a]) = |a[?"e~ 1o /n)
for the Fock state n.

thus leading to negative values in the Qg measurements. Effectively we are measuring Qo for the qubit in the ground
state, minus @y for the qubit in the excited state which exactly corresponds to Q)¢ of the resonator if the qubit is
perfectly cold.

Furthermore, the evolution of the coherent state correlated with an excited state qubit will also generate g-
component cat states which have negative readout voltages. This will reduce the amplitudes and coherent fringes of
the observed cat states as the amplitudes of our @),, measurements are scaled to the amplitude of the coherent state
of Fig. 3a in the main text. Effectively, the excited state population will lead to a reduction of the fidelity for the
measured cat states.

8 Cavity state tomography

Using the photon number state selective pulse to project onto the n** photon Fock state, along with a preceding cavity
displacement, we can measure (see Fig. 4):

1

Qnlam) = —(n|D(=Bm)pD(Bm)In) (13)
where n is the fock state projection; 3,,,the tomography displacement; and p, the cavity density matrix. The Q,, are
normalized probability distributions. Assuming a truncated photon basis, we are also able to directly reconstruct the
cavity Wigner function [8, 9]:

W (am) = % Te(D(—am)pD(am) P)

= 23 (1" (D (=)D (eI (14)

=2 Z(*l)nQn(am)

where P is the photon number parity operator. A more effective method for determining the Wigner function of the
resonator is to reconstruct its density matrix. Realizing that the @, are a set of linear equations, we can rewrite
Eqn. 13 as:

1
ij

where Mymi; = (n|D(—aum,)|i){j|D(am)|n) and p;; = (i| p|j). Measuring the distributions, Qn(as,), with known
photon projections n and displacements «,,, we can perform a least squares regression to determine the cavity state,
p. For this experiment, we measured 441 displacements each for projections onto the Fock states with 0 to 7 photons,
3528 measurements in total with 1000 averages per measurement point for each regression. We perform the linear
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regression with a priori assumptions that the cavity density matrix is Hermitian, of trace one, positive semi-definite
and having a trunctated basis of ten photons. This reconstructed density matrix is then used to calculate state fidelities
and plot Wigner functions (see Fig. 5).

Re(ar)

Figure 4: Q, () probability distributions. a-h, show the measured projections on the Fock states with n =0—7
for the two-component Schrodinger cat state shown in Fig.5a . Each @, («) was measured at 441 different displacements
a. The different @, () functions were measured by conditioning the qubit 7 pulse on the photon number in the cavity.
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Figure 5: Wigner function plot of the multi-component cat states emerging during the Kerr interaction.
The frames are measured after an evolution of a 1540 ns, b 1010 ns, and ¢ 760 ns. The Wigner functions are
reconstructed using a least mean square fit on the measurements of @, (o) for n =0—7.
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