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Observation of quantum state collapse and revival
due to the single-photon Kerr effect
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To create and manipulate non-classical states of light for quantum
information protocols, a strong, nonlinear interaction at the single-
photon level is required. One approach to the generation of suitable
interactions is to couple photons to atoms, as in the strong coupling
regime of cavity quantum electrodynamic systems1,2. In these sys-
tems, however, the quantum state of the light is only indirectly
controlled by manipulating the atoms3. A direct photon–photon
interaction occurs in so-called Kerr media, which typically induce
only weak nonlinearity at the cost of significant loss. So far, it has
not been possible to reach the single-photon Kerr regime, in which
the interaction strength between individual photons exceeds the
loss rate. Here, using a three-dimensional circuit quantum electro-
dynamic architecture4, we engineer an artificial Kerr medium that
enters this regime and allows the observation of new quantum
effects. We realize a gedanken experiment5 in which the collapse
and revival of a coherent state can be observed. This time evolution
is a consequence of the quantization of the light field in the cavity
and the nonlinear interaction between individual photons. During
the evolution, non-classical superpositions of coherent states (that
is, multi-component ‘Schrödinger cat’ states) are formed. We visua-
lize this evolution by measuring the Husimi Q function and confirm
the non-classical properties of these transient states by cavity state
tomography. The ability to create and manipulate superpositions of
coherent states in such a high-quality-factor photon mode opens
perspectives for combining the physics of continuous variables6

with superconducting circuits. The single-photon Kerr effect could
be used in quantum non-demolition measurement of photons7,
single-photon generation8, autonomous quantum feedback schemes9

and quantum logic operations10.
A material whose refractive index depends on the intensity of the

light field is called a Kerr medium. A light beam travelling through
such a material acquires a phase shift wKerr 5 KtI (ref. 11), where K is
the Kerr constant, t is the interaction time of the light field with the
material, and I is the intensity of the beam. The Kerr effect is a widely
used phenomenon in nonlinear quantum optics, and has been suc-
cessfully used to generate quadrature and amplitude squeezed states12,
parametrically convert frequencies13, and create ultra-fast pulses14. In
the field of quantum optics with microwave circuits, the direct ana-
logue of the Kerr effect is naturally created by the nonlinear inductance
of a Josephson junction (specifically the w4 / (b 1 b{)4 term in the
Taylor expansion of cosw in the Josephson energy relation, where w is
the superconducting phase difference across the junction, and b and b{

are the corresponding ladder operators)15,16. This effect has been used
to create Josephson parametric amplifiers17 and to generate squeezing
of microwave fields18. However, in both the microwave and optical
domains, most experiments use the Kerr nonlinearity in a semi-
classical regime, where the quantization of the light field does not play
a crucial role. The Kerr effect for a quantized mode of light with
frequency vc can be described by the normal ordered Hamiltonian,

HKerr~Bvca{a{B
K
2

a{a{aa, with K the Kerr frequency shift per
photon2,16 and a/a{ the ladder operators. The average phase shift per
photon is again given by wKerr 5 K/k, with k the decay rate of the photon
mode. Typical Kerr effects are so small that they are not visible on the
single-photon level because k . K. Applications which require K much
bigger than k include the realization of quantum logic operations10,
schemes for continuous variable quantum information protocols6 and
quantum non-demolition measurements of propagating photons7.

The Kerr nonlinearity of a Josephson junction is also routinely used
to create superconducting qubits. In this case, a circuit is engineered
with such a strong anharmonicity that it can be considered as a two-
level system. By combining a qubit with linear resonators, one realizes
the analogue of strong coupling cavity quantum electrodynamics
(QED), known as circuit QED1. This can be used to protect the qubit
from spontaneous emission, manipulate and read out its quantum state
and couple it to other qubits. One consequence of coupling any res-
onator to a qubit is that the resonator always acquires a finite anhar-
monicity K, becoming a Kerr medium itself15. Here we have designed K
large enough (K/k . 30) to be well within the single-photon Kerr
regime. At the same time, the nonlinearity is small enough that short
pulses (tpulse < 10 ns= 1/K) applied to the resonator create a coherent
state, allowing us to conveniently access the large Hilbert space of the
oscillator. Only a few experiments have previously come close to the
limit where K/k < 1 while still maintaining the ability to create coher-
ent states19–21. So far no experiment has been able to satisfy both con-
ditions at the same time so as to observe the collapse and revival of a
coherent state due to the Kerr effect.

As a first demonstration within this single-photon Kerr regime,
we realize a proposal5 for creating photonic Schrödinger cat states.
Specifically, we generate coherent states with a mean photon number
of up to four photons and measure the Husimi Q function of the
resonator state using a new experimental measurement protocol. We
then show the high quality of the Kerr resonator by measuring the time
evolution of the collapse and revival of a coherent state. During the
evolution, highly non-classical superpositions of coherent states, that
is, multi-component Schrödinger cat states, are formed, which show
the coherent nature of the effect. This revival, in contrast to the Jaynes–
Cummings revival of Rabi oscillations of a qubit induced by a coherent
state2,22, is the revival of a coherent state in a resonator. An analogous
effect was indirectly observed in early experiments with a condensate
of bosonic atoms in an optical lattice23. Additionally, we confirm the
non-classical properties of the transient states by performing cavity
state tomography.

We experimentally realize a highly coherent Kerr medium by
coupling a superconducting ‘vertical’ transmon qubit to two three-
dimensional waveguide cavities, as shown in Fig. 1a. This design is based
on a recently developed three-dimensional circuit QED architecture4.
The two halves of the cavities are machined out of a block of super-
conducting aluminium (alloy 6061 T6). Both cavities have a total quality
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factor of about one million, limited by internal losses, corresponding
to a single-photon decay rate k/2p5 10 kHz. The vertical transmon
consists of a single Josephson junction embedded in a transmission line
structure, which couples the junction to both cavities. The observed
transition frequency of the qubit is vq/2p5 7.8503 GHz and its anhar-
monicity is Kq/2p5 (vge 2 vef)/2p5 73.4 MHz using the standard
convention for labelling from lowest to highest energy level in the qubit
as (g,e,f,h,…) (see Supplementary Information). The energy relaxation
time of the qubit is T1 5 10ms with a Ramsey time T�2 ~8 ms. The qubit
is used to interrogate the state of the storage cavity, which acts as a
Kerr medium. The other cavity is used to read out the state of the qubit
after the interrogation, similarly to ref. 24.

The analysis of the distributed stripline elements and the cavity
electrodynamics can be performed using finite-element calcula-
tions for the actual geometry. Combined with ‘black-box’ circuit
quantization15, one can derive dressed frequencies, couplings and
anharmonicities with good relative accuracy (see Supplementary Infor-
mation). For the purposes of the experiments discussed here, the
coupling of the qubit to the storage resonator, in the strong dispersive
limit of circuit QED, is well described by the Hamiltonian

H
B

~
vq

2
sz{

x

2
a{aszz vc{

x

2

� �
a{a{

K
2

a{a{aa ð1Þ

taking into account only the lowest two energy levels of the qubit. The
operators a{/a are the usual raising/lowering operators for the har-
monic oscillator and sz is the Pauli operator. In this description, we
completely omit the measurement cavity because it is only used for
reading out the state of the qubit and otherwise stays in its ground state.
The energy level diagram described by the Hamiltonian given in equa-

tion (1) can be seen in Fig. 1b. The second term on the right-hand side
of equation (1) is the state-dependent shift per photon x/2p5 9.4 MHz
of the qubit transition frequency. The last two terms on the right-hand
side of equation (1) describe the cavity as an anharmonic oscillator
with a dressed resonance frequency vc and a nonlinearity K/2p5

325 kHz which is given by K < x2/4Kq (ref. 15). All interaction
strengths in the above Hamiltonian are at least one order of magnitude
bigger than any decoherence rate in the system.

To visualize and understand the evolution of the resonator state, we
measure the Husimi Q function Q0 in a space spanned by the expecta-
tion value of the dimensionless field quadratures Re(a) and Im(a). Q0

is defined as the modulus squared of the overlap of the resonator state

jYæ with a coherent state jaæ by Q0 að Þ~ 1
p

ahj jYij2. Alternatively, we
can write Q0 using the displacement operator Da~eaa{{a�a (note that

D{
a~D{a) as Q0 að Þ~ 1

p
0hj jD{a Yij j2, which describes the actual

measurement procedure used in the experiment. The sequence to
measure Q0 can be seen in Fig. 2a. The initial displacement, Db,
creates a coherent state jYæ 5 jbæ in the cavity, whose Q0 is given by

a Gaussian,
1
p

e{ a{bj j2 . After a variable waiting time t, we measure

Q0(a) by displacing the cavity state by 2a and determine the overlap
of the resulting wavefunction with the cavity ground state. The popu-
lation of the cavity ground state can be measured by applying a photon
number state selective p pulse, Xn~0

p , to the qubit (see Supplementary
Information), similarly to ref. 25. The qubit is excited if and only if
the cavity is in the n 5 0 Fock state, n being the photon number, after
the analysis displacement. This scheme allows us to determine Q0(a)
of the resonator up to experimental imperfections (see Supplementary
Information for details). Applying p pulses to the qubit conditioned
on other photon numbers, Xn

p , allows us to measure the overlap of
the displaced state with any Fock state n, which we will call the gene-

ralized Q functions Qn að Þ~ 1
p

nhj jD{a Yij j2. In essence, we can ask

the question ‘are there n photons in the resonator?’, using photon
number state selective pulses24. To test the analysis protocol, we mea-
sured Q0 and Q1 of the cavity in the ground state, Fig. 2b–e, by omitting
the first displacement pulse of the sequence given in Fig. 2a.

Using this method, we can follow the time evolution of a coherent
state in the presence of the Kerr effect. In the experiment, we prepare
a coherent state with an average photon number bj j2~�n~4 using a
microwave pulse21 to displace the cavity state. We then measure Q0 for
different delays between the preparation and analysis pulses. A com-
parison of the theoretical evolution of the coherent state and the mea-
sured evolution can be seen in Fig. 3. The time evolution of the state is
described by considering the action of the Kerr Hamiltonian HKerr on a
coherent state jbæ in the cavity5,26. In the rotating frame of the har-
monic oscillator, with the qubit in the ground state, we can write:

Y tð Þj i~eiK
2 a{að Þ2t bj i~e{ bj j2=2

X
n

bnffiffiffiffi
n!
p eiK

2n2
nj i ð2Þ

For short times, the nonlinear phase evolution of the Fock states jnæ
is closely approximated by a rotation of the state with an angle
wKerr 5 Kt(jbj2 1 1/2) with respect to the frame rotating at vc. The
onset of this rotation can be seen in Fig. 3a, which is taken at the
minimal waiting time of 15 ns between the two displacement pulses.
Because of this waiting time, the state rotates under the influence of the
Kerr effect from b 5 2 to beiwKerr~2ei0:13. For longer times we can see
how the state rotates further and spreads out on a circle (Fig. 3b, c).
This spreading can be simply understood in a semi-classical picture, in
which the amplitude components in the coherent state further away
from the origin evolve with a higher angular velocity given by the n2

dependence of the Kerr effect. Complete phase collapse is reached at
a time when the phase dispersion across the width of the photon
number distribution corresponds to ,p, which can be estimated as

Tcol~
p

2
ffiffiffi
�n
p

K
(ref. 2). For our system, the complete phase collapse
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Figure 1 | Device layout and energy level diagram of the two-cavity, one-
qubit device. a, Photograph of one half of two aluminium (alloy 6061)
waveguide cavities coupled to a vertical transmon qubit. Right, a magnified
view of the indicated area of the photograph, showing a detail of the qubit,
fabricated on a c-plane sapphire substrate 1.4 mm wide, 15 mm long and
430mm thick. The coupling strength of the qubit is determined by the length of
the stripline coupling antenna which extends into each cavity. The upper cavity,
with a resonant frequency of vm/2p5 8.2564 GHz, is used for qubit readout,
and the lower cavity, with a frequency of vc/2p5 9.2747 GHz, is used to store
and manipulate quantum states. b, Combined energy level diagram of the qubit
coupled to the storage cavity. The qubit states are denoted as | gæ and | eæ,
respectively, while the cavity states are labelled as | næ, with n the number of
photons in the cavity. Each photon in the cavity reduces the qubit transition
frequency by x. Equivalently, exciting the qubit reduces the cavity transition
frequency by x. The energy levels of the cavity are not evenly spaced owing to
the induced Kerr anharmonicity, K/2p5 325 kHz.
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happens at 385 ns. Figure 3b shows that a Kerr medium can be used as
a resource to generate squeezed states26. The state is squeezed along the
Re(a) quadrature with a width of 0.88(1), as predicted from theory.
The maximum squeezing occurs at t 5 58 ns with a width of Q0 of 0.87.

After the complete phase collapse, structure re-emerges in the form
of multi-component superpositions of coherent states (Fig. 3d–f)
at times which are integer submultiples of the complete revival

Trev~
2p
K

, Fig. 3h. The revivals, periodically appearing every Trev,

can be understood by noting that eiK
2n2t~ {1ð Þn

2

for t 5 Trev. The
cavity state is then given by jY(Trev)æ 5 j2bæ. At this time, we get a
complete state revival to a coherent state with opposite phase. For
t 5 Trev/q, with q an integer larger than 1, we can write the state of
the oscillator as a superposition of q coherent states2:

Y
Trev

q

� �����
�

~
1

2q

X2q{1

p~0

X2q{1

k~0

eik k{pð Þpq b eippq
��� E

ð3Þ

For q 5 2, we get the two-component Schrödinger cat state, similar to
the cat states created in refs 22 and 27. To distinguish the q compo-
nents of a cat state, the coherent states have to be separated by more
than twice their width on a circle with a radius given by the initial
displacement. In other words, the coherent states have to be quasi-
orthogonal. This means that for a displacement of jbj5 2, the maxi-
mum number of coherent states that can be distinguished is 4.

In Fig. 3g, we can see how the state again completely dephases
shortly before the coherent revival in Fig. 3h after t 5 3,065 ns. After
this time, we get a state with amplitude jbj5 1.78(2), which fits to the
expected decay of the resonator state. The theoretical plots for Fig. 3
were simulated by solving a master equation using the decay rate
k/2p5 10 kHz of the resonator and introducing a small detuning of
5 kHz of our drive from the resonator frequency vc. The time evolution
of the state in the experiment agrees well with the theory. The hazy ring

that can be seen in theory and experiment in Fig. 3h is produced by
cavity decay. The evolution of the state from 0 to 6.05ms over 50 frames,
including two revivals, can be seen in the Supplementary Video.

To get a more quantitative comparison of experiment and theory,
we need to determine the quantum state of the resonator. Although in
principle one can reconstruct the cavity wavefunction from the mea-
sured Husimi Q function, in practice there is important information,
such as the interference fringes between coherent state superpositions,
which is exponentially suppressed as the separation of the coherent
states increases2. This makes it hard to distinguish a mixture of cohe-
rent states from a coherent superposition in an experiment due to a
finite signal to noise ratio. An experimentally more practical way to
determine the quantum state of a resonator is, for example, to recon-
struct its Wigner function, as this emphasizes the interference fringes.
The Wigner function of a cavity2 has been determined by measuring
the parity of the resonator state. More recently, the state of an itinerant
microwave field has been determined by measuring the statistical
moments of the field operator28. Here we use a modified technique,
based on earlier work with ion traps and microwave circuits3,29, to
determine the density matrix of the resonator. The main difference
is our ability to directly measure Qn(a), which allows for a simple and
efficient measurement and reconstruction of the density matrix of the
resonator by using a least square fit to each Qn (see Supplementary
Information). Using this density matrix, we then calculate and plot
the Wigner function to show the interference fringes, highlighting the
quantum features of the resonator state.

In Fig. 4 we compare the experimentally obtained Wigner func-
tions to a simulation at three different times during the state evolution.
The times (t 5 2p/2K, 2p/3K and 2p/4K) were selected such that the
Wigner functions correspond to two-, three- and four-component cat
states. The simulation was again done by solving a master equation
that includes the decay of the cavity. The fidelity F 5 ÆYidjrmjYidæ of
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Figure 2 | Technique for measuring the generalized Husimi Q functions.
a, The experimental pulse sequence consists of a 10-ns displacement pulse Db,
which creates a coherent state in the cavity. After a variable waiting time, t, we
analyse the state in the cavity by displacing the cavity by –a followed by appulse
on the qubit conditioned on having n photons in the cavity. In this way we can

measure the generalized Q functions, Qn að Þ~ 1
p

nh jD{a Yj ij j2, which are

projections of the displaced wavefunction onto the Fock states | næ, where Q0(a)
is the Husimi Q function. b, Density plot of Q0 of the ground state with the
respective colour scale to the right. We measure the Q function at 441 different
analysis displacements a. The p pulse on the qubit Xn~0

p is conditioned on

having no photons in the cavity after the analysis displacement. c, Linecut of Q0

of the ground state along Im(a) 5 0. The red line is a plot of the theory, a

Gaussian given by
1
p

e{ aj j2 . A fit to the data with a Gauss function
1
p

e{I2=2s2

results in 2s2 5 1.03 6 0.02, which is consistent with the expected width.
d, Density plot of Q1 of the ground state with the respective colour scale to the
right. In this case the p pulse on the qubit Xn~1

p is conditioned on having one
photon in the cavity after the analysis displacement. e, Linecut of Q1 of the
ground state along Im(a) 5 0. The red line is a plot of the theory given by a

Poisson distribution
1
p

aj j2e{ aj j2 .
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the measured state rm, compared to an ideal n-component cat state
jYidæ, consisting of coherent states with amplitude jbj5 2e2kt/2, is
F2 5 0.71, F3 5 0.70, F4 5 0.71 for the two-, three-, four-component
cat states, respectively. The Wigner functions show clear interference
fringes, which demonstrates that the evolution is indeed coherent and
well described by the wavefunction given in equation (2). The main
reduction in the fidelity is due to the spurious excited state population
of the qubit (see Supplementary Information) and the decay of the
resonator state. The decay of the resonator state is also responsible for

the asymmetry in the interference fringes of the Wigner function—for
example, the maximum of the interference fringes for the two-component
cat states is shifted to the left in both theory and experiment.

We have shown that we can engineer strong photon–photon inter-
actions in a cavity, entering the single-photon Kerr regime where
K?k. We are able to observe the collapse and revival of a coherent
state due to the intensity-dependent dispersion between Fock states in
the cavity. This opens the possibility of using such a Kerr medium for
error correction schemes where a nonlinear cavity is used to realize the
necessary components9. The good agreement between the theory and
the experiment demonstrates the accurate understanding of this sys-
tem. It also confirms our ability to predict higher-order couplings,
which is a necessary ingredient for understanding the behaviour of
large circuit QED systems. Furthermore, we have measured the evolu-
tion of a coherent state in a Kerr medium at the single-photon level,
and shown a new experimental way for creating and measuring multi-
component Schrödinger cat states. This demonstrates the ability to
create, manipulate and visualize coherent states in a larger Hilbert
space, and opens up new directions for continuous variable quantum
computation30.
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