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We use a quantum path integral approach to describe the behavior of a microwave cavity coupled
to a dissipative mesoscopic circuit. We integrate out the mesoscopic electronic degrees of freedom
to obtain a cavity effective action at fourth order in the light/matter coupling. By studying the
structure of this action, we establish conditions in which the cavity dynamics can be considered
as Markovian. In this case, one can use a Lindblad equation to describe the cavity quantum dy-
namics, with effective parameters set by electronic correlation functions. This equation reveals that
the mesoscopic circuit induces an effective Kerr interaction and two-photon dissipative processes.
We use our method to study the effective dynamics of a cavity coupled to a double quantum dot
with normal metal reservoirs. If the cavity is driven at twice its frequency, the double dot circuit
generates photonic squeezing and non-classicalities visible in the cavity Wigner function. In par-
ticular, we find a counterintuitive situation where mesoscopic dissipation enables the production of
photonic Schrödinger cats. These effects can occur for realistic circuit parameters. Our method
can be generalized straightforwardly to more complex circuit geometries with, for instance, multiple
quantum dots, and other types of fermionic reservoirs such as superconductors and ferromagnets.

PACS numbers: 42.50.Pq, 74.25.N-,73.23.-b, 73.63.Fg

I. INTRODUCTION

Embedding nonlinear Josephson circuits into mi-
crowave cavities has enabled impressive progress in the
quantum control of microwave light1. Indeed, the field
of circuit Quantum Electrodynamics (QED) offers many
functionalities. For instance, squeezed photonic states,
where the uncertainty of one quadrature is reduced be-
low the zero-point level, can be obtained by embedding
a nonlinear circuit such as a Superconducting Quan-
tum Interference Device (SQUID) array into a microwave
cavity2. A classical cavity state can evolve into a quan-
tum superposition of coherent states due to an effec-
tive Kerr interaction provided by a superconducting
quantum bit3. One can also generate arbitrary quan-
tum superpositions of Fock states by using the time-
dependent coupling of a superconducting qubit to a mi-
crowave resonator4,5. For most quantum protocols im-
plemented so far, cavity damping is a spurious effect.
However, it has been demonstrated experimentally that
in a nonlinear circuit QED setup driven with microwaves,
photon-number dependent losses can be used to pre-
pare photonic Schrödinger cat states6 and stabilize au-
tonomously Fock states7. This result contributes to a
research field called “reservoir engineering”, which pro-
motes the idea that, contrarily to the common belief,
dissipation is not always harmful for the quantumness of
a system8–11. Thanks to this rich phenomenology, non-
linear microwave cavities offer many possibilities of appli-
cations, from sensing to quantum information and com-
munication. For example, squeezed states of light offer
a powerful resource for quantum-enhanced sensing12,13.
More recently, quantum computing schemes have been
suggested, where quantum information would be encoded

FIG. 1: Example of Mesoscopic QED device. Panel (a):
Microwave cavity ac driven at twice the cavity frequency ω0.
The nanocircuit (in grey) is coupled capacitively to the cavity
central conductor at an electric field node. Panel (b): Double
quantum dot coupled to normal metal reservoirs N with a
tunnel rate Γ. The dots are tunnel coupled with a hopping
strength tLR. The normal metal reservoirs have a voltage bias
Vb. Panel (c): Schematic representation of the cavity Wigner
function as a function of the field quadratures, measured by
performing the cavity tomography.

in a manifold of cavity states stabilized autonomously by
two-photon dissipation14. In this context, the photonic
Wigner function is a widely measured quantity to charac-
terize the joint statistics of the cavity field quadratures15.
It is obtained experimentally by performing the cavity
tomography5.

In standard Circuit QED experiments, the Joseph-
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son circuits coupled to microwave cavities are exclusively
made of superconducting metals and Josephson junc-
tions. However, due to the versatility of microwave fabri-
cation techniques, the connection between Circuit QED
and mesoscopic physics is naturally growing16,17. Re-
cently, circuits enclosing a single18 or a double19 quantum
dot and normal18,19, ferromagnetic20,21 or superconduct-
ing reservoirs22,23 have been coupled to microwave cav-
ities. In the experiments performed so far, microwave
cavities have appeared as a powerful means to character-
ize the electronic spectrum and dynamics of mesoscopic
circuits. However, the scope of Mesoscopic QED could
go far beyond. Indeed, mesoscopic circuits are intrin-
sically nonlinear due to their anharmonic energy spec-
trum. Besides, fermionic reservoirs represent a specific
source of dissipation which involves electrically controlled
quantum transport. It is therefore appealing to investi-
gate the potentialities of Mesoscopic QED for produc-
ing quantum cavity states. In this direction, entangled
light/matter states due to a strong charge/photon23–25

or spin/photon21,26–28 coupling have been obtained in
recent experiments, using double quantum dots circuits.
However, many more situations remain to be explored.

On the theory side, the effect of dissipative fermionic
reservoirs in Mesoscopic QED setups has been mostly
investigated in the semiclassical regime where the num-
ber of cavity photons is so large that quantum fluctua-
tions in the photon number can be disregarded22,29–32.
Otherwise, a sequential tunneling description of quan-
tum transport has been used, which is valid only for very
small tunnel rates33–38. A general quantum description
of Mesoscopic QED is lacking. One needs to develop
a theory which describes the cavity quantum dynam-
ics in the presence of dissipative mesoscopic transport.
This description must apply to complex circuit configu-
rations with arbitrary tunnel couplings to voltage-biased
fermionic reservoirs. It is also important to take into ac-
count the nonlinear photonic effects inherited from the
light/matter interactions, which have been eluded so far
in the theory of Mesoscopic QED, and offer a vast field of
investigation. This requires to work beyond the second
order treatment of the light/matter coupling.

In this work, we fill these gaps by employing a quantum
path integral technique along the Keldysh contour, which
is particularly convenient to integrate out electronic de-
grees of freedom and obtain an effective description of the
cavity nonlinear behavior39. We consider a cavity with
frequency ω0 coupled to a mesoscopic circuit and excited
with a microwave tone at frequency 2ω0 with a moder-
ate amplitude εp (i.e. εp can be treated to first order).
We note g the order of magnitude of the light/matter
coupling in the mesoscopic QED device. We obtain the
effective quantum action of the cavity to fourth order
in g/ω0. This action depends on electronic correlation
functions of the mesoscopic circuit, which we express in
terms of Keldysh Green’s functions. It reveals that, in the
general case, the cavity has a non-Markovian dynamics
and is subject to photon-photon interactions mediated

by the mesoscopic circuit. However, we establish suffi-
cient conditions on the mesoscopic correlators for having
a Markovian cavity dynamics. In this case, the 2ω0 drive
produces a coherent two-photon drive and an unusual
squeezing dissipation at third order in g/ω0. Addition-
ally, the mesoscopic circuit induces, at fourth order in
g/ω0, Kerr photon-photon interaction as well as stochas-
tic two-photon losses and gains. Importantly, our results
are valid for tunnel couplings rates to the reservoirs of
the mesoscopic circuit smaller as well as larger than the
electronic temperature since no sequential tunneling hy-
pothesis is required. We make the realistic assumption
that the cavity has a large quality factor and a dressed
linewidth much smaller than the mesoscopic resonances
linewidth. We finally disregard Coulomb interactions in
the mesoscopic circuit.

We use our method to study the quantum dynamics
of a microwave cavity coupled to a non-interacting dou-
ble quantum dot (DQD) with normal metal contacts bi-
ased with a voltage Vb. We identify two situations where
the effective dynamics of the cavity is Markovian but
nevertheless displays clear non-linear light/matter inter-
action effects. The first situation is the limit of a low
light/matter coupling (g ∼ 0.01ω0). In this case, we
derive an effective Lindblad equation description of the
cavity behavior to third order in g/ω0, from which we ob-
tain an analytic expression of the cavity Wigner function
in stationary conditions. The 2ω0 drive produces a co-
herent injection/withdrawal of photon pairs in the cavity
and an unusual squeezing dissipative process. This leads
to a squeezing of the cavity vacuum, which depends non
trivially on the system parameters. The second Marko-
vian situation is when the double dot is resonant with
2ω0 and has moderate interdot hopping and tunnel cou-
plings to its reservoirs, and the light/matter coupling is
moderate (g ∼ 0.1ω0). In this case, a Lindblad equation
to fourth order in g/ω0 is necessary to describe the cavity
dynamics. In this limit, we find that, in the absence of a
cavity drive (εp = 0), dissipative transport in the double
dot circuit can enable the stochastic absorption and/or
emission of photon pairs in the cavity, depending on the
value of Vb. When the cavity is ac driven (εp 6= 0) with
Vb = 0, we show, with numerical simulations of the pho-
tonic Lindblad equation, that the DQD circuit can be
used to produce photonic Schrödinger cat states. This
effect is expected for realistic circuit parameters. It is
due to a combination of the two photon drive in εpg

3/ω3
0

and the photon pair damping in g4/ω3
0 . Hence, counter-

intuitively, mesoscopic dissipation enables the generation
of a quantum superposition of cavity states. More gen-
erally, our work demonstrates the interest of Mesoscopic
QED for the preparation of quantum photonic states.

Our approach can be used to explore many more circuit
geometries and protocols, with single or multiple quan-
tum dots, or extended nanoconductors modeled with the
Hubbard model30,32,40–42, and different types of fermionic
reservoirs. Hence, it should be instrumental for the de-
velopment of Mesoscopic QED in the nonlinear quantum
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regime, towards which experimental efforts are headed.

This article is organized as follows. Section II intro-
duces the Mesoscopic QED Hamiltonian and discusses a
direct density matrix description of Mesoscopic QED and
its drawbacks. Section III presents the general descrip-
tion of Mesoscopic QED with the path integral approach.
It also explains how the cavity effective action leads to a
Markovian Lindblad description, at third order in g/ω0

for any parameters, or at fourth order in g/ω0 provided
some mesoscopic correlation functions fulfill a Markovian
condition. Section IV applies the results of section III to
the example of a microwave cavity coupled to a double
quantum dot. In particular, it shows how the double dot
can be used to squeeze the cavity vacuum or to produce
photonic Schrödinger cats. In section V, we discuss the
perspectives of generalization of our approach to a large
span of mesoscopic circuits. Appendix A gives details on
the derivation of the cavity effective action at fourth or-
der in g/ω0. Appendix B1 gives a direct calculation of the
possible semiclassical values of the cavity photonic am-
plitude at fourth order in g/ω0 (without using the path
integral approach). This enables a semiclassical interpre-
tation of some of the parameters which occur in the cavity
effective action. Appendix B2 shows an alternative way
to determine the possible values of the cavity photonic
amplitude, by considering the saddle points of the cavity
action. The agreement between the results of Appendix
B1 and Appendix B2 at fourth order in g/ω0 provides an
important sanity check for our approach. Appendix D
establishes a quantitative equivalence at order 2 in g/ω0

between the Lindblad equation arising from the direct
density matrix approach and the Lindblad equation aris-
ing from the path integral approach. Appendix E gives
details on the calculation of the cavity Wigner function.
Appendix F gives details on the dependence of the pho-
tonic squeezing effect on the double dot parameters.

II. DESCRIPTION OF MESOSCOPIC QED
WITH A DIRECT DENSITY MATRIX

APPROACH

A. System Hamiltonian

We consider a cavity with bare frequency ω0 excited by
a microwave drive εac(t), and coupled to a mesoscopic
circuit. This circuit contains N discrete orbitals with
index d, coupled to fermionic reservoirs with a continuum
of states with index k. The mesoscopic circuit can be
for instance a quantum dot circuit, in which case the
orbitals d are located in the dots17–19. Each orbital d is
coupled to the electric quadrature of the cavity field with
a constant gd (see Ref.43 for a first-principles description
of this effect and a microscopic expression of gd). The
resulting Mesoscopic QED device can be described with

the Hamiltonian

Ĥtot = ω0â
†â+ εac(t)

(
â† + â

)
+ ĥb (1)

+ Ĥmeso +
∑
d

gd(â
† + â)ĉ†dĉd

with

Ĥmeso =
∑
d

ωdĉ
†
dĉd +

∑
d<d′

(
td′,dĉ

†
d′ ĉd +H.c.

)
+
∑
k,d

(
tk,dĉ

†
k ĉd +H.c.

)
+
∑
k

ωk ĉ
†
k ĉk (2)

Above, â† is the cavity photon creation operator, ĉ†d
the electron creation operator in the discrete orbital

d ∈ [1, N ] and ĉ†k an electron creation operator in a level
k of one of the fermionic reservoirs. In the general case,
the indices k and d include the spin degree of freedom.
We do not specify the exact Mesoscopic circuit geometry
for the moment because our approach is general. The
tunnel hopping strength between two orbitals d and d′[k]
located in neighboring sites of the circuit is noted td′[k],d.
We use ~ = 1. Intrinsic cavity damping is described by

the Hamiltonian ĥb which we do not specify here. In
most cases, the orbital energy ωd of site d can be finely
tuned with an electrostatic gate, and bias voltages can
be applied to the fermionic reservoirs to induce electronic
transport. In the following, we assume that an ac drive

εac(t) = (εpe
−i2ω0t + ε∗pe

i2ω0t)/2 (3)

is applied to the cavity. We will see that both compo-
nents in e−i2ω0t and ei2ω0t contribute to the the cavity
response through higher order processes (effect in (g/ω0)3

at least). For simplicity, we do not describe explicitly the
microwave inputs and outputs of the cavity but this can
be added straightforwardly by using the input/output
theory29,44,45.

B. Direct density matrix approach and its
drawbacks

The most commonly used description of Circuit QED is
the density matrix approach which consists in expressing
directly the time evolution of the system density matrix.
Here we will shortly discuss this approach to point out its
weaknesses and the interest of the path integral approach
in the context of nonlinear Mesoscopic QED.

We assume that the interaction term V̂ is a per-
turbation in the system Hamiltonian, in comparison
with the cavity contribution in ω0 and mesoscopic con-
tribution Ĥmeso. For simplicity, in this section, we
also assume that there is no cavity drive (εp = 0)

and no cavity intrinsic dissipation (i.e. ĥb is negligi-
ble). In these conditions, it is convenient to use the
interaction picture, where the density matrix ρI(t) =

eiω0â
†ât+iĤmesotρ(t)e−iω0â

†ât−iĤmesot of the full meso-
scopic QED device (cavity+mesoscopic circuit) has an
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evolution equation

∂ρI(t)

∂t
= −i[V̂ (t), ρI(t)] (4)

with

V̂ (t) = N̂(t)
(
âe−iω0t + â†eiω0t

)
(5)

N̂(t) =
∑
d

gdn̂d(t) (6)

and

n̂d(t) = eiĤmesotĉ†dĉde
−iĤmesot (7)

Note that Ĥmeso and ĉ†dĉd do not commute due to dot-
dot and dot-reservoir tunneling. Hence, from Eqs. (6)

and (7), N̂(t) depends on time.
We now discuss the expression of the cavity dynamics

at second order in g. The integration of Eq.(4) gives

ρI(t) = ρI(t0)− i
t∫
t0

dt1[V (t1), ρI(t1)] (8)

with t0 a reference time far in the past. Inserting this
equation back in Eq.(4) gives

∂ρI(t)

∂t
= −i[V̂ (t), ρI(t0)]−

t∫
t0

dt1[V̂ (t), [V (t1), ρI(t1)]]

(9)
In the limit where the mesoscopic system has a correla-
tion time τ which is much shorter than the cavity char-
acteristic timescale of evolution T , only the times t1 such
that t − t1 . τ will contribute in the above integral46.
Accordingly, one can assume that the mesoscopic system
is constantly at equilibrium, i.e.

ρI(t1) = ρ0
meso ⊗ ρIcav(t1) (10)

with ρ0
meso the equilibrium density matrix of the meso-

scopic circuit for gd = 0. Finally, since τ � T , one
can use ρI(t1) = ρ0

meso ⊗ ρIcav(t) in the above integral,
Performing the trace Tr

k,d
on the mesoscopic degrees of

freedom, one finally gets

∂ρIcav(t)

∂t

= −iTr
k,d

[
[V (t), ρ0

meso ⊗ ρIcav(t0)]
]

−
t∫
t0

dt1 Tr
k,d

[
[V (t), [V (t1), ρ0

meso ⊗ ρIcav(t)]]
]

(11)

A reorganization of Eq.(11) gives, keeping only resonant
terms and considering a stationary situation,

∂ρIcav(t)

∂t
= −2 Im[χB(ω0)]Lâ(ρIcav(t))

− 2 Im[χA(ω0)]Lâ†(ρIcav(t))
− iRe[χB(ω0)− χA(ω0)] [â†â, ρIcav(t)] + o(ǧ2)

(12)

Above,

LL̂j
(ρIcav) =

∑
j

(
L̂jρ

I
cavL̂

†
j −

1

2
{L̂†jL̂j , ρ

I
cav}

)
(13)

is the Lindblad superoperator associated to the jump op-
erator L̂j . We have disregarded the first order term in
ǧ/ω0 which is non-resonant with the cavity. The meso-
scopic correlators

χA(t) = −iθ(t)
〈
N̂(0)N̂(t)

〉
(14)

and

χB(t) = −iθ(t)
〈
N̂(t)N̂(0)

〉
(15)

whose Fourier transforms χA[B](ω) =
∫
dt χA[B](t)e

iωt

appear in Eq.(12), have to be evaluated to second or-
der in the light/matter interaction. More precisely, from

Eq.(6), one can use
〈
N̂(t′)N̂(t)

〉
=
∑
d,d′ gdgd′Ad′,d(t

′, t)

and Ad′,d(t
′, t) =

〈
ĉ†d′(t

′)ĉd′(t
′)ĉ†d(t)ĉd(t)

〉
0

where 〈〉0 de-

notes a statistical average calculated for gd = 0 for any

d, i.e. Ad′,d(t
′, t) = Tr

[
ρ0
mesoĉ

†
d′(t
′)ĉd′(t

′)ĉ†d(t)ĉd(t)
]

. In

the absence of Coulomb interactions, the evaluation of
Ad,d′ can be done straightforwardly by using the Wick
theorem (see for instance Ref.47).

To describe the dynamics of ρIcav beyond the second
order in g, one straightforward idea is to iterate Eq.(8).
This gives

∂ρIcav(t)

∂t
(16)

= −iTr
k,d

[
[V (t), ρI(t0)]

]
−

t∫
t0

dt1 Tr
k,d

[
[V (t), [V (t1), ρI(t0)]]

]
+ i

t,t1∫∫
t0,t0

dt2dt3 Tr
k,d

[
[V (t), [V (t1), [V (t2), ρI(t0)]]]

]
+
t,t1,t2∫∫∫
t0,t0,t0

dt1dt2dt3 Tr
k,d

[[V (t), [V (t2), [V (t3), [V (t4), ρI(t0)]]]]

+ o(ǧ4)

At this stage, conceptual difficulties as well as calculation
heaviness make the generalization of Eq.(12) nontrivial.
First, a back-action of the cavity on the mesoscopic den-
sity matrix should be taken into account. This means
that expression (10) cannot be used to express ρI(t0) in
Eq.(16). Hence, it will be more difficult to introduce
independently defined mesoscopic correlators in the ex-
pression of ∂ρIcav(t)/∂t. Besides, the dynamics of the
system is not anymore Markovian in the general case,
so that ρIcav(t) does not appear naturally in the right
member of Eq.(16). Finally, even in a case where a gen-
eralization of the Markovian Eq.(12) would be possible,
due to the iterative structure of Eq.(16), the number of
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FIG. 2: Synoptic table of the theoretical approach introduced
in section III

mesoscopic correlators to define would explode, and the
explicit calculation of these correlators from the meso-
scopic circuit Hamitonian would be a lengthy task. In
fact, all these difficulties stem from the fact that the trace
on the mesoscopic degrees of freedom is performed after
the time evolution of ρI(t) is expressed. It is thus crucial
to use a calculation method where the electronic degrees
of freedom are integrated earlier, i.e. at the level of the
device Hamiltonian. This is why we will develop an ef-
ficient quantum path integral description of Mesoscopic
QED in the next section.

III. GENERAL DESCRIPTION OF
MESOSCOPIC QED WITH THE QUANTUM

PATH INTEGRAL FORMALISM

This section describes a general method based on the
quantum path integral description to describe the effec-
tive behavior of a microwave cavity coupled to a meso-
scopic circuit. From the Mesoscopic QED Hamiltonian of
Eq.(1), we express the global quantum action of the sys-
tem (see section III A). The fermionic degrees of freedom
in this action can be integrated out to obtain the cavity
effective action (see section III B). We compare this ac-
tion to the action given by a generic Lindblad description
of a cavity dynamics (see section III C). This enables us to
establish a criterion to have a cavity Markovian dynamics
at fourth order in the light/matter coupling. When this
criterion is fulfilled, we can finally write the cavity effec-
tive Lindblad equation. This approach is summarized in
the synoptic table of Figure 2.

A. Quantum action of the whole Mesoscopic QED
device

A generic description of Mesoscopic QED can be built
by expressing the Schwinger-Keldysh partition function
of the system with a quantum path integral along the
Keldysh contour39. To this end, we define, along the
forward and backward branches of the Keldysh contour,
the fields ϕ±(t), ϕ̄±(t), ψ±,d(t) and ψ̄±,d(t), which corre-
spond to a possible “realization” of the operators â, â†,

ĉd and ĉ†d over time48. It is convenient to define the av-
erage and relative field components ϕcl/q(t) = (ϕ+(t) ±
ϕ−(t))/

√
2, ϕ̄cl/q(t) = (ϕ̄+(t) ± ϕ̄−(t))/

√
2, ψ0/1,d(t) =

(ψ+,d(t) ± ψ−,d(t))/
√

2, and ψ̄0/1,d(t) = (ψ̄+,d(t) ∓
ψ̄−,d(t))/

√
2. These quantities can be grouped into vecto-

rial fields ϕ(t) = t{ϕcl(t), ϕq(t)}, ϕ̄(t) = {ϕ̄cl(t), ϕ̄q(t)},
ψ(t) = t{ψ0(t), ψ1(t)} and ψ̄(t) = {ψ̄0(t), ψ̄1(t)}. Note
that in the case of a mesoscopic circuit with several dis-
crete orbitals, the fields ψ0(t) and ψ1(t) have an or-
bital structure ψm(t) = t{ψm,d1(t), ..., ψm,dN (t)} with
m ∈ {0/1}. In the main text of this article, all the fields
have a time argument t, which is omitted for brevity,
except when two times t and t′ are involved in an equa-
tion. The global Schwinger-Keldysh partition function
Z of the mesoscopic QED device and the correspond-
ing quantum action Stot can be obtained directly from
Hamiltonian (1) by considering the elementary evolution
of the system along the Keldysh contour39. This gives

Z =

∫
d[ϕ̄, ϕ, ψ̄, ψ]eiStot(ϕ̄,ϕ,ψ̄,ψ) (17)

with

Stot(ϕ̄, ϕ, ψ̄, ψ) = S0
cav(ϕ̄, ϕ) + S0

meso(ψ̄, ψ) (18)

+ ∆Sac(ϕ̄, ϕ) + ∆Sinter(ϕ̄, ϕ, ψ̄, ψ)

Above, d[ϕ̄, ϕ, ψ̄, ψ] is the differential element associated
to the fields ϕ̄, ϕ, ψ̄ and ψ. The term

S0
cav(ϕ̄, ϕ) =

∫
t

[
ϕ̄cl ϕ̄q

] [ 0 Dt − iΛ0

2

Dt + iΛ0

2 iΛ0(1 + 2nB)

] [
ϕcl
ϕq

]
(19)

is the bare cavity action, with Dt = i∂t − ω0, nB =
1/(eω0/kBT − 1) and Λ0 a damping rate due to the cav-
ity bath treated in the Markovian approximation49. For

compactness, we note
∫ +∞
−∞ dt =

∫
t
. The cavity drive

brings a contribution:

∆Sac(ϕ̄, ϕ) = −
√

2

∫
t

(ϕ̄q + ϕq) εac(t) (20)

The bare action from the mesoscopic circuit is

S0
meso(ψ̄, ψ) =

∫
t,t′

ψ̄(t)Ǧ−1(t, t′)ψ(t′) (21)
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with Ǧ the mesoscopic circuit Green’s function in the
absence of light/matter coupling. The contribution from
the light/matter coupling is

∆Sinter(ϕ̄, ϕ, ψ̄, ψ) = −
∫
t,t′

ψ̄(t)(v̌(ϕ̄, ϕ, t)δ(t− t′))ψ(t′)

(22)

with
∫∫ +∞
−∞ dt dt′ =

∫
t,t′

and v̌ a light/matter coupling

function. Both Ǧ and v̌ are defined below.
The unperturbed mesoscopic circuit Green’s function

which appears in Eq.(21) has the structure Ǧ(t, t′) =∫
ω

Ǧ(ω)eiω(t′−t) with39

Ǧ(ω) =

[
G̃r(ω) G̃K(ω)

0̃ G̃a(ω)

]
(23)

the 2 × 2 mesoscopic Keldysh space. Above, 0̃ is a ma-
trix full of zeros in the N × N the mesoscopic orbitals
space. The retarded, advanced and Keldysh components
G̃r/a/K(ω) of Ǧ also have a N×N structure in the meso-
scopic orbitals space. In the absence of superconducting
correlations in a circuit, the elements of G̃r, G̃a and G̃K
in the line d and column d′ can be defined as

Gd,d
′

r (t) = −iθ(t)
〈
{ĉd(t), ĉ†d′(t = 0)}

〉
(24)

Gd,d
′

a (t) = iθ(−t)
〈
{ĉd(t), ĉ†d′(t = 0)}

〉
(25)

and

Gd,d
′

K (t) = −i
〈

[ĉd(t), ĉ
†
d′(t = 0)]

〉
(26)

respectively, with the Fourier transforms G̃r/a/K(ω) =∫ +∞
−∞ dt G̃r/a/K(t)eiωt. At this stage, we do not give

a more explicit expression for Ǧ because we consider a
generic mesoscopic circuit. An example of expression for
Ǧ will be given in section IV for a non-interacting double
dot.

The light matter coupling occurs in Eq.(22) through
the term

v̌(ϕ̄, ϕ, t) = ǧ
ϕ̄cl(t) + ϕcl(t))σ̌0 + (ϕ̄q(t) + ϕq(t))σ̌1√

2
(27)

Above, we use matrices σ̌0[1] = σ̊0[1] ⊗ 1̃, where σ̊0 and
σ̊1 correspond to the identity and the first Pauli matrix
in the Keldysh subspace of the mesoscopic circuit (index

0/1) and 1̃ is the identity in the mesoscopic orbitals sub-
space. We also note ǧ = σ̊0 ⊗ g̃ with g̃ = diag[g1, ..., gN ]
a diagonal matrix in the mesoscopic orbitals subspace.
More generally, the superscripts ◦ and ∼ decorate a ma-
trix in the 2 × 2 mesoscopic Keldysh subspace and the
N × N mesoscopic orbital subspace, respectively. The
superscript ∨ decorates a matrix in the tensor product
of these two spaces. The notation g used previously cor-
responds to g = maxd[gd].

B. Effective cavity action to fourth order in ǧ/ω0

In order to obtain an effective description of the cav-
ity dynamics solely, one must integrate out the electronic
degrees of freedom in Eq.(17). For simplicity, we will dis-
regard Coulomb interactions in the mesoscopic circuit.
In this case, the mesoscopic QED action is quadratic
with respect the electronic fields ψ and ψ̄, and one can
thus perform a straightforward Gaussian integration of
Eq.(17) on these fields (in the interacting case, it is possi-
ble to use more elaborate integration procedures39). The
resulting effective cavity action Seffcav (ϕ̄, ϕ) can be sim-
plified after a systematic expansion with respect to the
light/matter coupling matrix ǧ (see Appendix A for de-
tails). We work to fourth order in ǧ/ω0 in order to cap-
ture essential non-linear electron/photon interaction ef-
fects. In order to simplify the final expression of Seffcav ,
we assume that the dressed cavity linewidth is much
smaller than ω0 and the width of the mesoscopic res-
onances linewidth. This criterion is largely satisfied in
experiments as well as for the parameters used in this
manuscript. We finally obtain the expression

Seffcav (ϕ̄, ϕ) = S0
cav(ϕ̄, ϕ) +

∑
i∈{2,3,4}

∆S(i)
g (ϕ̄, ϕ) + o(ǧ4)

(28)

Above, ∆S
(i)
g is the mesoscopic circuit contribution to

Seffcav to ith order in ǧ/ω0. The first order contribution in
ǧ/ω0 can be disregarded because it is not resonant with
the cavity.

The second order contribution

∆S(2)
g (ϕ̄, ϕ) = −

∫
t

[
ϕ̄cl ϕ̄q

]
.

[
0 χ∗2
χ2 λ2

]
.

[
ϕcl
ϕq

]
(29)

involves the semiclassical charge susceptibility

χ2 = − i
2

∫
ω

Tr
d

[
G̃K(ω)g̃

(
G̃a(ω − ω0) + G̃r(ω + ω0)

)
g̃
]

(30)
of the mesoscopic circuit at frequency ω0 and the corre-
lation function

λ2 = − i
2

∫
ω

Tr
d

[G̃K(ω)g̃G̃K(ω + ω0)g̃ (31)

+ G̃a(ω)g̃G̃r(ω + ω0)g̃ + G̃r(ω)g̃G̃a(ω + ω0)g̃]

We note
∫
ω

=
+∞∫
−∞

dω
2π , and Tr

d
the trace operator on the

mesoscopic orbital index d. Note that χ2 has already
been introduced in other works22,29–32,38,50, essentially
for studying the semiclassical behavior of a Mesoscopic
QED device to second order in ǧ/ω0. A cavity frequency
shift is caused by Re[χ2] whereas Im[χ2] renormalizes the
bare cavity linewidth Λ0 of Eq.(19). The parameter λ2 is
necessary to describe the quantum regime of Mesoscopic
QED, but it has been disregarded so far. From Eq.(31)
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with G̃K(ω) = −G̃K(ω)† and G̃a(ω) = G̃r(ω)†, one can
check that λ2 is purely imaginary.

For εp 6= 0, we obtain a third order term S
(3)
g (t) in

ǧ/ω0 which can be expressed as

∆S(3)
g (ϕ̄, ϕ) = −i

∫
t

e−2iω0t
[
ϕ̄cl ϕ̄q

]
.

[
0 Ucl/2

Ucl/2 Uq

]
.

[
ϕ̄cl
ϕ̄q

]
− i
∫
t

e2iω0t
[
ϕcl ϕq

]
.

[
0 −U∗cl/2

−U∗cl/2 U∗q

]
.

[
ϕcl
ϕq

]
(32)

with

Ucl = −βp
2

∫
ω

Tr
k,d

[σ̌1ǧǦ(ω)ǧǦ(ω + ω0)ǧǦ(ω − ω0)]

+ Tr
k,d

[Ǧ(ω)σ̌1ǧǦ(ω + ω0)ǧǦ(ω − ω0)ǧ]) (33)

Uq = −βp
2

∫
ω

Tr
k,d

[σ̌1ǧǦ(ω)σ̌1ǧǦ(ω+ω0)ǧǦ(ω−ω0)] (34)

and

βp = εpt0/2 (35)

Above, we note Tr
k,d

the trace operator on both the meso-

scopic orbital index d and the Keldysh index k. The
prefactor

t0 = Gr0(2ω0) + Ga0 (−2ω0) (36)

takes into account how the mesoscopic circuit feels the
ac drive through the cavity, with

Gr/a0 (ω) = (ω − ω0 ± i
Λ0

2
)−1 (37)

the bare cavity retarded/advanced Green’s function [see
Eq.(110) for a semiclassical picture of this effect]. Subse-
quently, the reaction of the mesoscopic circuit to the ac
drive affects the cavity effective behavior, as described by
the terms in Uq and Ucl. Importantly, these terms can
be significant because the smallness of t0 can be com-
pensated by the use of a large enough drive amplitude
βp. Interestingly, the coefficient Ucl corresponds to the
semiclassical joint response of the mesoscopic charge to
the cavity field in â and to the drive in βp (see Appendix
B1, Eq.(114)).

Finally, we find a fourth order contribution in ǧ/ω0,
which occurs even for βp = 0, i.e.

∆S(4)
g (ϕ̄, ϕ) = −

∫
t

[
ϕ̄clϕ̄cl ϕ̄clϕ̄q ϕ̄qϕ̄q

]
.A.

ϕclϕclϕclϕq
ϕqϕq


(38)

with

A =

 0 χ∗4 −U∗4
χ4 λ4 V ∗4
U4 V4 W4

 (39)

χ4 = i(Nq,cl,cl,cl +Ncl,q,cl,cl) (40)

λ4 = i(Ncl,q,cl,q +Ncl,q,q,cl +Nq,cl,cl,q +Nq,cl,q,cl) (41)

V4 = i(Nq,q,cl,q +Nq,q,q,cl) (42)

U4(ω0) = iNq,q,cl,cl (43)

W4(ω0) = iNq,q,q,q (44)

Nf,f ′,l,l′ = −
∫
ω

Tr
k,d

[
1

8
Ǧ(ω)σ̂f ǧǦ+σ̂lǧǦ(ω)σ̂f ′ ǧǦ+σ̂l′ ǧ

+
1

4
Ǧ(ω)σ̂f ǧǦ+σ̂f ′ ǧǦ(ω + 2ω0)σ̂lǧǦ+σ̂l′ ǧ

]
(45)

and Ǧ+ = Ǧ(ω + ω0). Note that λ4 and W4 are purely

imaginary due to G̃K(ω) = −G̃K(ω)† and G̃a(ω) =

G̃r(ω)†. The coefficient χ4 corresponds to the second
order semiclassical response function of the quantum dot
to the cavity electric field (see Appendix B1, Eq.(114)).
The other coefficients λ4, U4, V4 and W4 are necessary to
describe quantum fluctuations of the cavity field. In sum-
mary, Eqs. (28) - (45) describe the effective action of a
microwave cavity in a generic Mesoscopic QED device to
fourth order in the light/matter coupling. This requires
to introduce new types of quantum dot correlators than
the known χ2. We will discuss the physical effect of the
new correlators λ2, Ucl, Uq, χ4, λ4, U4, V4 and W4 in
the next sections. Importantly, one has to choose an ap-
propriate technique to obtain an explicit description of
the cavity dynamics out of the cavity effective action. In
the following we will consider Markovian situations such
that an effective Lindblad equation on the cavity density
matrix can be used.

C. Correspondence between the cavity effective
action and a photonic Lindblad equation

The most popular description of Circuit QED is the
Lindblad equation which describes the evolution of the
cavity density matrix. Below, we come back to this de-
scription to clarify the physical meaning of the different
terms in the cavity action.

1. Cavity effective Lindblad equation up to third order in
ǧ/ω0

In the limit of low couplings gd and limited cavity drive
βp, the cavity field remains small so that one can truncate
the cavity effective action to third order in ǧ/ω0. In this
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case, we show below that it is always possible to estab-
lish a Markovian Lindblad equation on the cavity density
matrix. Thereby, we clarify the physical meaning of the
terms in Ucl and Uq.

When a cavity follows a Markovian evolution, the time
derivative of its density matrix ρcav(t) only depends on
the value of ρcav at time t. More precisely, one can use
a Lindblad equation15:

∂ρcav(t)

∂t
= −i[Heff

cav , ρcav(t)] + γjLL̂j
(ρcav(t)) (46)

with Heff
cav the effective cavity Hamiltonian, γj the rate of

a dissipative process corresponding to the jump operator
L̂j and LL̂j

(ρcav) defined in Eq.(13). Let us assume that

the effective Hamiltonian has the generic form

Heff
cav = (ω0+∆ω0)â†â+iρpe

−i2ω0tâ†2−iρ∗pei2ω0tâ2 (47)

and the dissipative processes are characterized by
(γj , L̂j) ∈ P with

P = {(γloss, â), (γgain, â
†), (γp, â+ eiϕpe−i2ω0tâ†)} (48)

The above parameters ∆ω0, ρp, γloss, γgain and γp are
unspecified for the moment. The action corresponding to
the master equation (46) can be expressed as (see details
in Appendix C)

SMark(t) =

∫
t

[
ϕ̄cl ϕ̄q

]
.

[
0 Ft − iγ−2

Ft + iγ−2 iγ+

]
.

[
ϕcl
ϕq

]

+

∫
t

e−i2ω0t
[
ϕ̄cl ϕ̄q

]
.

[
0 −iρp
−iρp iγpe

iϕp

]
.

[
ϕ̄cl
ϕ̄q

]

+

∫
t

ei2ω0t
[
ϕcl ϕq

]
.

[
0 iρ∗p
iρ∗p iγpe

−iϕp

]
.

[
ϕcl
ϕq

]
(49)

with

γ− = γloss − γgain (50)

γ+ = γloss + γgain + 2γp (51)

and Ft = i∂t − ω0 − ∆ω0. It is possible to perform an
exact identification between the actions of Eqs.(49) and
(28) to third order in ǧ/ω0 by using

∆ω0 = Re[χ2] (52)

ρp = Ucl/2 (53)

γpe
iϕp = −Uq (54)

γloss = γ0
loss − γp (55)

γgain = γ0
gain − γp (56)

with

γ0
loss = Λ0(1 + nB)− Im[χ2 +

λ2

2
] (57)

γ0
gain = Λ0nB + Im[χ2 −

λ2

2
] (58)

and γp > 0 by definition.

We now comment on the physical effect of the com-
ponents (52)-(58). As found previously22,29–32,38,50, the
cavity frequency shift ∆ω0 is directly set by the real
part of χ2. A comparison between Eqs.(19) and (49)
indicates that the cavity intrinsic linewidth Λ0 is also
shifted by ∆Λ0 = −2 Im[χ2]. The dissipative processes
with rates γloss and γgain correspond to standard single
photon emission and absorption which are widely consid-
ered in circuit QED. One can see from Eqs.(55)-(58) that
Im[χ2] contributes to the asymmetry between the pho-
ton loss and gain rates γloss and γgain whereas Im[λ2]
contributes equally to γloss and γgain. The coefficients
ρp and γp account for the effect of the ac drive since they
are nonzero only for βp 6= 0. From Eq.(53), Ucl gener-
ates the two-photon coherent drive in ρp of Eq.(47). In
Circuit QED, a similar drive has been recently obtained
by using a complex configuration with two microwave
cavities coupled nonlinearly and subject to two off res-
onant drives6. Finally, the process with a rate γp gen-
erated by Uq has not been considered so far and seems
more specific to strongly dissipative structures. Its jump
operator Lp = â + eiϕpe−i2ω0tâ† corresponds to an un-
usual time-dependent coherent superposition of photon
absorption and emission operators. From Eqs. (55) and
(56), one could believe that γp decreases the single pho-
ton loss and gain rates, but this is not effective because
the rates γ+ and γ− through which γloss and γgain occur
in the cavity action do not depend on γp. Indeed, from
Eqs.(50), (51), (55) and (56), one has γ− = γ0

loss − γ0
gain

and γ+ = γ0
loss+γ0

gain. There remains a term in γp which
occurs through the second and third lines of Eq.(49) on
the same footing as ρp. We will study the effect of this
peculiar term in section IV D 2 for the case of a double
quantum dot and show that it corresponds to a “squeez-
ing dissipation”. Importantly, in this work, we have used
a range of γp such that one has γloss > 0 and γgain > 0,
as required by the definition of the Markovian Lindblad
equation (46). When the drive amplitude βp becomes so
large that γloss < 0 and/or γgain < 0, we expect that
higher order terms in βp become relevant, which intro-
duces new terms in the cavity action which are not nec-
essarily Markovian. In this case, the Lindblad Eq.(46) is
not relevant anymore. This limit is beyond the scope of
this article.
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2. Cavity effective Lindblad equation to fourth order in
ǧ/ω0

We now investigate the possibility to identify the path
integral approach of section III with a Lindblad descrip-
tion up to fourth order in ǧ/ω0. We expect an extra
contribution

Heff,4
cav = Kâ†2â2 (59)

to the effective Hamiltonian (47), which corresponds to
a Kerr photonic interaction. We also expect dissipative
processes with rates and jump operators (γj , L̂j) ∈ P4

with

P4 = {(Kloss, â
2), (Kgain, â

†2), (D, â†â)} (60)

The three processes in the above ensemble correspond re-
spectively to two photon loss, two photon gain and pure
dephasing. This leads to an action contribution (see Ap-
pendix A)

S
(4)
Mark = −

∫
t

[
ϕ̄clϕ̄cl ϕ̄clϕ̄q ϕ̄qϕ̄q

]
.AM .

ϕclϕclϕclϕq
ϕqϕq


(61)

with

AM =

 0 iK−2 +K − iD2
−iK−2 +K −i (D + 2K+) −iK−2 +K

− iD2 iK−2 +K 0


(62)

and K− = Kloss − Kgain, K+ = Kloss + Kgain. To
establish a mapping with the path integral description,
we now have to compare the above matrix AM with the
matrix A of Eq. (39) which occurs in the effective action
of the Mesoscopic QED device to fourth order in ǧ/ω0.
Strikingly, AM and A cannot be mapped in all situations.
This is rigorously possible when the condition

CMark = (W4 = 0)&(Re[U4] = 0)&(V4 = χ∗4) (63)

is fulfilled. Equation (63) represents a sufficient condi-
tion to have a Markovian cavity dynamics to fourth or-
der in ǧ/ω0. For a given mesoscopic circuit, one must
test this condition by evaluating numerically the differ-
ent fourth order mesoscopic correlators. When condition
(63) is valid, one has

K = Re[χ4] (64)

Kloss/gain = ∓ Im[χ4] +
Im[U4]

2
− Im[λ4]

4
(65)

and

D = −2 Im[U4] (66)

Hence, Re[χ4] generates the effective Kerr interaction
(59). Remarkably, there exists an analogy between the

expressions of the rates for the single and two photon
stochastic processes, Eqs. (65) and Eqs. (57)-(58). In-
deed, Im[χ4] provides an opposite contribution to two-
photon loss and gain, like Im[χ2] does for single pho-
ton processes. In contrast, Im[λ4] − 2 Im[U4] provides
the same contribution to two-photon loss and gain, like
Im[λ2] does for single photon processes. The term in
Im[U4] also contributes to photonic dephasing (term in
D). This last effect does not have any analogue to second
order in ǧ/ω0.

We could not find other contributions to the jump op-
erator ensemble P4 of Eq. (60) to extend the mapping
between the path integral approach and the Lindblad de-
scription beyond the regime of validity of Eq.(63). Any-
how, to fourth order in ǧ/ω0, a full mapping cannot be
expected since the dynamics of the cavity is not neces-
sarily Markovian. For instance, there can be “memory”
effects due to a coherent exchange of energy between the
cavity and the mesoscopic circuit. This will be illustrated
in the case of a non-interacting double quantum dot in
section IV E.

3. Summary: total photonic Lindblad equation up to fourth
order in ǧ/ω0 in the interaction picture

In practice, it is convenient to study the cavity dy-
namics in an interaction picture by considering the
time evolution of the cavity density operator ρIcav(t) =

eiω0â
†âtρcav(t)e

−iω0â
†ât. In this picture, Eqs. (46), (47),

(48), (59) and (60) lead to

∂ρIcav(t)

∂t
= −i[Heff,I

cav , ρIcav] + γjLL̂j
(ρIcav) (67)

with

Heff,I
cav = ∆ω0â

†
I âI + iρpâ

†2
I − iρ

∗
pâ

2
I +Kâ†2I â

2
I (68)

and dissipative processes (γj , L̂j) ∈ PI with

PI={(γloss, âI), (γgain, â†I), (γp, âI + eiϕp â†I),

(Kloss, â
2
I), (Kgain, â

†2
I ), (D, â†I âI)} (69)

with âI = e−iω0tâ.
Interestingly, Eq.(67) appears as a generalization to

fourth order in ǧ/ω0 of Eq.(12) obtained with the direct
density matrix approach. Indeed, one can check that
these two Eqs. agree to second order in ǧ/ω0, provided
the assumption Λ0 = 0 of section II B is used. For this
purpose, one must use the equalities

χ2 = χB(ω0)− χA(ω0) (70)

and

λ2|ω0 6=0 = 2i Im [χA(ω0) + χB(ω0)] (71)

which are derived in Appendix D.



10

IV. THE CASE OF A DOUBLE QUANTUM
DOT IN A CAVITY

A. Circuit description

We now apply the results of section III to the case of
a spin-degenerate double quantum dot coupled to a mi-
crowave cavity, represented schematically in Fig.I, pan-
els (a) and (b). This circuit encloses two quantum dots

L and R with a tunnel coupling tLR such that Ĥmeso

includes a term tLRĉ
†
LĉR + t∗LRĉ

†
RĉL. The dot L(R)

is contacted to a normal metal reservoir with a tunnel
rate ΓL(R). Equation (1) gives Γd = 2πΣk∈C |tk,d|2 for
d ∈ L(R). The rate Γd can be considered as energy-
independent in the framework of a wide band approxima-
tion for the reservoirs with |tk,d|2 independent of k. In the
following we consider the case ΓL = ΓR = Γ. A bias volt-
age V is applied between the two normal metal contacts.
The orbital energy ωL(R) of dot L(R) can be finely tuned
with an electrostatic gate. In principle, ωL(R) can also
be shifted by a fraction of eV which depends on the ratio
of the junctions capacitances. Here we will assume that
this shift is negligible51. We will also disregard Coulomb
interactions in the double dot. This basic case presents
essential ingredients of mesoscopic QED: the cavity elec-
tric field can couple to both the internal transition be-
tween the L and R orbitals of the double dot, and to
transitions between the dots and the continuum of states
of the normal metal reservoirs.

B. Unperturbed mesoscopic Green’s function of
the double dot

The unperturbed mesoscopic circuit Green’s function
Ǧ of the double dot, whose inverse appears in Eq. (21),
must be calculated in the absence of light/matter cou-
pling (i.e. gL = 0 and gR = 0). It can be obtained by
performing the inversion

Ǧ(ω) =

[
G̃−1
r (ω) M̃K

0̃ G̃−1
a (ω)

]−1

(72)

with52,53

G̃−1
r(a)(ω) =

[
ω − ωL ± iΓ

2 −tLR
−t∗LR ω − ωR ± iΓ

2

]
(73)

and

M̃K =

[
iΓ(1− 2nF,L(ω)) 0

0 iΓ(1− 2nF,R(ω))

]
(74)

Equations (73) and (74) stem from the explicit definitions

(24)-(26) of the Green’s functions G̃r/a/K(ω) in terms
of fermionic operators and the expression of the double
dot circuit Hamiltonian (see Eq. (2) with gL(R) = 0).
Since we consider a spin degenerate situation with non-
interacting quantum dots, the spin degree of freedom is

omitted in the above orbital subspace structure. We will
restore it later in numerical evaluations by taking into ac-
count an implicit multiplication by a factor 2 in the traces
operator over the orbital index d. The Fermi occupation
function nF,L(R)(ω) = (1 + exp[(ω ∓ (eVb/2))/kBT ])−1

of the L(R) contact is affected by the bias voltage Vb.
For later use, we also define the lesser self energy of the
double dot52

Σ̃<(ω) =

[
iΓnF,L(ω) 0

0 iΓnF,R(ω)

]
(75)

and the light/matter coupling matrix

ǧ = diag[gL, gR, gL, gR] (76)

C. Choice of parameters

For simplicity, we will use a nonzero gL and gR = 0,
which corresponds to DQD experiments realized so far,
where a very asymmetric microwave coupling to the two
dots is engineered. In experiments realized with stan-
dard coplanar microwave resonators, the light matter
coupling is typically gL ∼ 0.001ω0

17. In a more recent
design based on high kinetic inductance superconduct-
ing nanowire resonators, gL ∼ 0.03ω0 was reached54.
However, since the rms voltage of these resonators is55

Vrms = 20 µV ' 4.9 GHz for ω0 ∼ 4 GHz, one can
reach gL ∼ ω0, in principle, by using a galvanic coupling
between one of the dots and the cavity.

Since we develop the cavity action with respect to gL
and βp, the amplitude of these parameters must not be
too large. First, in the absence of ac drive, the cavity ef-
fective action has contributions in g2n

L only, with n ∈ N.
One must use gL/ω0 6 0.5 so that contributions with
n > 4 remain negligible. Second, when the ac drive is
switched on (βp 6= 0), action contributions in g2n+1

L ap-
pear. We will only take into account the lowest order
contribution, corresponding to Eq.(32), which is in βpg

3
L.

We will use βpg
3
L/ω

3
0 � 1 so that higher order contribu-

tions in βp are expected to be negligible.

D. The low coupling limit: squeezed photonic
vacuum induced by a double quantum dot

1. Evaluation of the Lindblad equation coefficients to third
order in gL/ω0

We have seen above that Ucl corresponds to a co-
herent two photon drive whereas Uq corresponds to an
unusual form of dissipation. In this section, we eval-
uate these coefficients in the double dot case. Figure
3 shows |Ucl| and |Uq| versus the dot orbital energies
ωL and ωR, for moderate tunnel rates Γ = 0.1ω0 and
a moderate interdot hopping tLR = 0.1ω0. We use a
zero bias voltage in panels (a) and (b) and a nonzero
bias voltage Vb = 1.5ω0 in panels (c) and (d). Both Ucl
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FIG. 3: Panels (a), (b), (c) and (d): Absolute values of the
coefficients Ucl and Uq which account for the effect of the 2ω0

drive of the cavity at order 3 in the photon/dot coupling g,
versus the dot orbital energies ωL and ωR. Panels (a) and (b)
correspond to a bias voltage Vb = 0 and panels (c) and (d)
to eVb = 1.5ω0. The other parameters are Γ = 0.1ω0, tLR =
0.7ω0, kBT = 0.275ω0, gR = 0, and Λ0 = 5.10−5ω0. We use
a normalization factor U0 = g3Lβp/ω

2
0 . Panel (e) indicates

the positions of resonances between the dot internal degree
of freedom and the cavity for ∆ωLR ' ±R(2ω0). Panels (f)
and (g): examples of coherent and dissipative processes in
g3L involving the 2ω0 drive. When the internal transition of
the double dot matches 2ω0, it can absorb a 2ω0 photon.
This enables the emission of two ω0 photons upon electronic
transitions which are internal to the dot (panel (f)) or involve
the normal metal contacts (panel (g)).

and Uq show strong resonances which appear as diagonal
lines in Fig.3. These lines correspond to resonances of
the cavity with the double dot internal degree of free-
dom (see panel (e)). More precisely, the bonding and
antibonding states of the double dot, which result from
the tunnel coupling between the left and right orbitals,
have energies ω∓ = (ωL + ωR ∓

√
∆ω2

LR + 4t2LR)/2 with
∆ωLR = ωL−ωR the dots orbital detuning. In principle,

single photon resonances ω+ − ω− = ω0 are expected for

∆ωLR = ±Y (ω0) with Y (ω0) =
√
ω2

0 − 4t2LR, and two-
photon resonances are expected for ∆ωLR = ±Y (2ω0).
In Fig.3, only the two-photon resonances are visible be-
cause we use 2tLR > ω0 and therefore the condition
∆ωLR = ±Y (ω0) can never be satisfied. Panels (f)
and (g) show some examples of two-photon processes
which are expected to contribute to the resonances at
∆ωLR = ±Y (2ω0). A photon with frequency 2ω0 can be
converted into two photons with frequency ω0, in tunnel-
ing sequences which can be either purely coherent (panel
(f)) or dissipative (panel (g)). Interestingly, the gate volt-
age area where the two-photon resonances appear is mod-
ified when a nonzero bias voltage is used (panels (c) and
(d)). This is because the third order processes such as
the one of panels (f) and (g) require that the double dot
bonding and antibonding states are occupied and empty
respectively, and the transport processes induced by a
nonzero Vb modify the occupation of these states. There-
fore using a nonzero bias voltage can be useful to trigger
two-photon processes, especially in case of weak tunabil-
ity of ωL(R), which can happen for some types of quantum
dots. Interestingly, |Uq| also shows broad vertical reso-
nances (for ωL constant) outside of the gap between the
∆ωLR = Y (2ω0) and ∆ωLR = −Y (2ω0) resonances (see
panels (b) and (d)). These resonances are due to tunnel-
ing between the left dot and the left reservoir, due to the
conditions gL 6= 0 and Γ 6= 0. As expected, these res-
onances shift with Vb (compare panels (b) and (d)) and
get thinner when Γ decreases (not shown). The transi-
tion between the right reservoir and the right dot is not
directly coupled to the cavity since gR = 0, but a broad
horizontal resonance also appears in Fig.3b between the
lines ∆ωLR = Y (2ω0) and ∆ωLR = −Y (2ω0) because the
hybridization between the left and right orbitals enables
tunneling to the right reservoir. Note that the horizon-
tal and vertical resonances induced by the presence of
the normal metal reservoirs are visible in |Uq| but not in
|Ucl|. This can be explained by the fact that tunneling to
the normal metal reservoirs is a stochastic effect which
impacts more directly the dissipative processes in γp (or
Uq) than the coherent drive in ρp generated by Ucl.

2. Stationary Wigner function of the cavity to third order
in gL/ω0

To characterize the effects of the terms in Ucl and
Uq, we now calculate analytically the stationary cavity
Wigner function which follows from Eq.(67) to third or-
der in ǧ/ω0, i.e. assuming that the terms in K, Kloss,
Kgain and D are negligible. The cavity Wigner function
can be defined quite generally as

W (α, α∗, t) =
1

π2

∫
d2βe(β∗α−α∗β)

〈
eβâ

†
I−β

∗
I âI
〉
t

(77)
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Following the method of Ref.44, one can show that Eq.
(67) leads to the evolution equation

∂

∂t
W =

(
−i∆ω0

[
∂

∂α∗
α∗ − ∂

∂α
α

])
W (78)

+

(
γ+

2

∂

∂α

∂

∂α∗
+
γ−
2

(
∂

∂α
α+

∂

∂α∗
α∗
))

W

−
(

2ρp
∂

∂α
α∗ + 2ρ∗p

∂

∂α∗
α

)
W

− γp
(
e−iϕp

2

∂2

∂α∗2
+
eiϕp

2

∂2

∂α2

)
W

(see details in Appendix E). To our knowledge, the term
in γp in Eq.(78) has not been considered before, in the
context of Circuit or Cavity QED. In the stationary
regime, the solution of this equation is:

W (α, α∗, t→ +∞) =
1

π

√
A2 − 4 |B|2

exp

(
P

A2 − 4 |B|2

)
(79)

with

P = A |α|2 +B∗α2 +Bα∗2 (80)

and, to third order in ǧ/ω0 and first order in εp,

A = −γ+/2γ− (81)

and

B =

(
ρp
γ+

γ−
− γp

eiϕp

2

)
/ (γ− + 2i∆ω0) (82)

Equation (79) describes a squeezed cavity vacuum. The
major axis of the squeezed Gaussian is tilted by an angle
θ = arg[B]/2 from the Re[α] axis. The fields quadra-
tures along the θ and θ + π/2 angles have the variances

∆X± =
√
−(A/2)± |B|. Strinkingly, from Eq.(82), the

coherent drive in ρp and the dissipation processes in γp
can both contribute to cavity squeezing and interfere con-
structively or destructively depending on the value of the
phase ϕp. Note that expression (79) is valid for any type
of mesoscopic circuit as long as (67) can be treated to
third order in ǧ/ω0. In Appendix F, we study in more
details the influence of the double dot parameters on the
photonic squeezing.

E. Photonic Schrödinger cat states produced by a
double quantum dot

Obtaining Schrödinger cat states is useful to study the
quantum behavior of a device on a fundamental level as
well as to develop quantum computers. To obtain such
states with our device, we need to invoke the fourth order
terms in gL/ω0 of Eqs. (59) or (60), which will generate
multistability in the cavity behavior. For simplicity, we

FIG. 4: Fourth order electronic correlation functions versus
∆ωLR calculated for ωav = (ωL + ωR)/2 = 0.989ω0, Γ =
0.01ω0, tLR = 0.15ω0, kBT = 0.3ω0, eVb = 0, gR = 0, βp =
0.35, and Λ0 = 10−4ω0. Panels (a) and (b) show the real parts
of the correlators and panels (c) and (d) the imaginary parts.
The left panels show the area ∆ωLR ∼ R(ω0) whereas the
right panels show ∆ωLR ∼ R(2ω0). All correlation functions
are normalized by C0 = g4L/ω

3
0 . The full and empty diamonds

correspond to reference points for a comparison with Fig.5.
The Markovian condition (63) is satisfied when the red full
lines and black dashed lines coincide in the top and bottom
panels (χ∗

4 = V4), the green dashed line is close to 0 in both
panels (W4 = 0) and the yellow line is close to zero in the top
panel (Re[U4] = 0). This is true for panels (b) and (d).

will perform the study of this situation in the particu-
lar case where the system dynamics remains Markovian.
This limit presents the advantage of remaining formally
simple while demonstrating interesting potentialities of
Mesoscopic QED.

1. Double dot correlation functions to fourth order in
gL/ω0

In the double dot case, can the Markovian approxima-
tion hold to fourth order in gL/ω0, or equivalently, can
the condition CMark of Eq.(63) be satisfied? To answer
this question, we show in Fig.4 the dependence of the
coefficients χ4, λ4, U4, V4 and W4 on ∆ωLR, for a zero
bias voltage (Vb = 0) and low tunnel rates (Γ = 0.01ω0).
Figures 4a and c show that CMark is not true when the
double dot is resonant with the cavity (∆ωLR ∼ R(ω0)).
This is not surprising, because, in this case, real energy
exchanges between the double dot and the cavity are pos-
sible, leading to vacuum Rabi oscillations in the case of
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FIG. 5: Fourth order electronic correlation functions versus
Vb for Γ = 0.01ω0 [panels (a) and (c)] and versus Γ for Vb = 0
[panels (b) and (d)]. We use ωav = 0.989ω0 and ∆ωLR =
1.967ω0. The other parameters are the same as in Fig.4. The
diamonds correspond to reference points identical to those of
Fig.4.

low Γ and Λ0. Hence, for the cavity, the mesoscopic
circuit represents a “bath with memory”, which is in-
compatible with an effective Markovian dynamics. An-
other interesting regime is ∆ωLR ∼ ±Y (2ω0), because
the electronic correlation functions in g4

L present reso-
nances in this area, as already seen for Ucl and Uq to
third order in gL/ω0. The Markovian condition (63) is
satisfied for ∆ωLR ∼ ±Y (2ω0), small values of Γ and
tLR, and Vb = 0 (Figs.4b and d) as well as a nonzero Vb
(Figs.5a and 5c). One may attribute this result to the
fact that, in this regime, there can only be virtual energy
exchanges between the cavity and the double dot, which
occur on a timescale which is very short in comparison
with the typical timescale for the evolution of the cav-
ity. The Markovian condition is not valid anymore for
higher tunnel rates Γ > 0.1ω0 (see Figs.5b and 5d). In-
deed, in this case the resonances at ∆ωLR ∼ Y (ω0) and
∆ωLR ∼ Y (2ω0) start overlapping and the distinction
between real and virtual energy exchanges between the
cavity and the double dot becomes less clear. The Marko-
vian condition is not valid either for ∆ωLR ∼ Y (2ω0) and
tLR large (tLR > 0.3ω0) (not shown). This is why, in the
rest of this section, we will focus on the Markovian dy-
namics of the cavity for ∆ωLR ∼ Y (2ω0), tLR . 0.15ω0

and Γ . 0.1ω0. Note that for Γ→ 0, the imaginary part
of the correlators vanishes (see the very left of Fig.5d
for the onset of this effect). Since we are interested in
the effect of a genuinely dissipative mesoscopic circuit,

we will only consider the case Γ ≥ 0.005ω0 in the fol-
lowing. In particular, we will consider the working point
Γ ' 0.01ω0 where |Im[χ4]| and |Im[λ4]| have a local max-
imum (see very left of Fig.5d). Figure 6 represents some
possible photonic processes at fourth order in gL/ω0 in
this limit (see panels (a), (b1), (b2), (b3) and (c)), for
different configurations of dot orbital energies and bias
voltage. It also shows Kloss and Kgain versus ∆ωLR and
Vb for the parameters of Fig.4 and Fig.5 with Γ = 0.01ω0

and ∆ωLR = Y (2ω0). In these conditions, one can check
that for Vb = 0, the two-photon stochastic dissipation
rate Kloss is the dominant stochastic rate in Eq.(69),
i.e. Kgain, D, γloss and γgain are much weaker. The
rate Kloss corresponds to the type of processes repre-
sented in Fig.6, panels (b1) and (b2), where two photons
can be absorbed simultaneously by the double dot cir-
cuit because the double dot is resonant with 2ω0, and
this absorption is made irreversible by the presence of
the normal metal reservoirs. The working point ωav = 0
and ∆ωLR = Y (2ω0) corresponds to a maximal Kloss for
Vb = 0 (see point (b2)). For comparison, in the configu-
ration of (b1), Kloss is weaker because the filling of the
lower dot level is less efficient. Remarkably, a nonzero Vb
can be used to obtain a nonzero Kgain and change the
relative values of Kloss and Kgain (see bottom right panel
of Fig.6). For Vb < 0, Kloss increases because the filling
of the lower dot level and/or the emptying of the upper
dot level by the normal metal reservoirs becomes more
efficient and this enhances the “reset” of the double dot
between two photon pair absorption processes (Fig.6b3).
For Vb > 0 and sufficiently large, the filling of the upper
dot level and emptying of the lower dot level are favored,
which causes photon pair emission processes (see Fig.6c)
while Kloss vanishes. In this limit, the emission of photon
pair is obtained without any need for an ac cavity exci-
tation (εp = 0) because the mesoscopic bias in Vb pro-
vides the energy for this process. The Kerr interaction
K, which corresponds to the processes of Fig.6a, varies
like Re[χ4] which is represented in Figs.4 and 5. Strink-
ingly, for Vb = 0, K cancels at ∆ωLR = Y (2ω0) where
Kloss is maximal (see Figs.4b and 4b). Importantly, in all
these plots, the order of magnitude of Kloss, Kgain and
K is given by the constant C0 = g4

L/ω
3
0 . Using the typi-

cal value ω0 = 2π × 5 GHz and the ratio gL/ω0 = 0.125
which is strong but experimentally feasible, in principle
(see section IV.C), one finds C0 = 2π×1.2 MHz. We will
see in next sections that this is be sufficient to obtain
sizeable non-linear signatures in the cavity response.

2. Average photon number

Before studying the full quantum behavior of the cavity
through the Wigner function W , it is useful to study the
mean value of 〈â〉 which can be expressed analytically.
This can reveal a multistable behavior which is expected
for driven nonlinear systems44 and which will be useful
to obtain photonic Schrödinger cats. From the Lindblad
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FIG. 6: Example of processes at fourth order in the
light/matter coupling g. Panel (a) shows a fully coherent
process which involves only the internal transition of the dou-
ble dot and can contribute to the term in K. Panels (b1),
(b2), (b3) show processes which involve irreversible tunneling
to the normal metal reservoirs and contribute to Kloss for
different configurations of dot orbital energies and bias volt-
age. Panel (c) shows a process which contributes to Kgain

in the presence of a finite bias voltage. The left bottom plot
shows Kloss versus ωLR for two difference values of ωav, i.e.
ωav = R(2ω0)/2 (full red line) and ωav = 0 (dashed red line).
The right bottom plot shows Kloss (red full line) and Kgain

(blue full line) versus Vb for ωav = R(2ω0)/2.

equation (46) with the fourth order terms (59) and (60)
included and 〈â〉 = αave

−iω0t, one gets

Uclα
∗
av −

(
Λ0 + ∆Λ0,4

2
+ iχ2 − 2iχ4 |αav|2

)
αav = 0

(83)
with

∆Λ0,4 = Im[λ4 − 4(χ4 + U4)] (84)

the renormalization of the cavity linewidth to fourth or-
der in gL/ω0. This Eqs. bears similarities with the result
given by semiclassical approaches (see Appendix B), but
the term ∆Λ0,4 is specific to a full quantum-mechanical
treatment. The solution αav = 0 is obvious. How-
ever, in principle, Eq.(83) can also give nonzero values
of αav = α±av given by

α±av =
1

|χ4|

√
−Re[χren2 χ∗4]±

√
∆

2
(85)

FIG. 7: Various characteristics of the cavity response versus
the tunnel rate to the normal metal reservoirs Γ in the pres-
ence of the cavity drive in εp treated at fourth order in gL.
We use ωav = 0.989ω0, gL = 0.125ω0 and ∆ωLR = R(2ω0) '
1.978ω0. The other parameters are the same as in Fig.4. The
full cyan line, the black crosses and the red crosses show the
semiclassical photon amplitudes α+

av and its approximations
α+
av,I and α+

av,II of Eqs.(85), (88) and (89), respectively. The
green dots show the square root of the average photon num-
ber N in the cavity in stationnary conditions, obtained from
Eq.(67). The magenta dots show the maximum negativity of
the Wigner function over time t and the quadratures α, α∗

for the protocol discussed in section IV E 3 where the cavity
drive in switched on suddenly.

with

∆ = |χ4|2 |Ucl|2 − Im [χren2 χ∗4]
2

(86)

and χren2 = χ2 − i(Λ0 + ∆Λ0,4)/2. Importantly, αav
must be real. Hence, from Eq.(85) for low amplitudes
of βp, the only possible solution is αav = 0 since ∆ < 0.
For a stronger drive (|Ucl| > |Im [χren2 χ∗4] /χ4|), ∆ be-

comes positive. Then, the comparison between
√

∆ and
±Re[χ∗4χ

ren
2 ] sets whether there are 0, 1 or 2 values of

αav allowed by Eq.(85). Finally, two values for αav are
possible for each value of ϕav, i.e.

ϕ±av = −1

2
arg

[
iχren2 + 2iχ4α

± 2
av

Ucl

]
+ nπ (87)

with n ∈ {0, 1}. In some cases, we find that α+
av and

α−av can be both solution to Eq. (83). However, for
simplicity, we focus below on the situation of moder-
ate interdot hopping (tLR = 0.15ω0), moderate tunnel
rates (0.005ω0 ≤ Γ ≤ 0.1ω0) and a zero bias voltage
(Vb = 0), where one has typically a single nonzero solu-
tion α+

av. In particular, for the parameters considered in
Fig. 7, one has |Ucl| � |Uq|, K = Re[χ4] � − Im[χ4]
and Im[χ4] < 0. Therefore, one has α+

av ' α+
av,I with

α+
av,I =

√√√√ Im[χren2 ] +
√
|Ucl|2 − Re [χren2 ]

2

−2 Im[χ4]
(88)
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This quantity is represented with black crosses in Fig.7,
and is in excellent agreement with the exact α+

av repre-
sented with a cyan line. Equation (88) shows the crucial
role of the two-photon dissipation provided by the term
in Im[χ4] for the creation of nonzero photon states (if one
had |χ4| → 0, α+

av would diverge and thus become phys-
ically irrelevant). Of course, it is also necessary to have
a high enough Ucl. A crudest approximation is obtained
by using χren2 = 0, which yields

α+
av,II =

√
2 |ρp|

Kloss −Kgain
(89)

(see red crosses in Fig.7). This expression shows well
that the nonzero α+

av results from a balance between two-
photon coherent injection and two-photon dissipation. In
contrast, the effect of the Hamiltonian Kerr term K is
negligible in Fig.7. The comparison between α+

av,I and

α+
av,II shows that the single-photon processes described

by χren2 slightly decrease the amplitude of α+
av and the

range of Γ for which cavity bistability is obtained. Note
that in principle, one has to study the stability of the α±av
solutions to determine their relevance. We will omit such
a study because the cavity Wigner function calculated in
section IV E 3 can provide this information for the regime
we are interested in.

3. Cavity Wigner function to fourth order in gL/ω0 in
non-stationary conditions

So far, we have studied the cavity Wigner function W
in stationary conditions. We now assume that the cav-
ity is initially in the stationary vacuum state obtained in
the absence of the microwave drive (βp = 0). We want
to study the time evolution of W when we switch on βp
at t = 0. However, since we have derived the terms in
βp in Eq.(67) in stationary conditions (see Eq.(3) and
Appendix A), one has to be careful about the validity of
this equation which could be jeopardized by the sudden
rise of βp. In fact, Eq. (67) will still be valid in the
transient regime if we impose two constraints on the rise
time of βp. On the one hand, we will assume that this
rise time is much longer that the correlation time ∼ 1/Γ
associated to tunneling to the mesoscopic reservoirs, so
that the terms Ucl and Uq in the cavity effective action
can still be defined at any time from Eqs.(33) and (34)
with a prefactor βp which depends on t. On the other
hand, we will assume that the rise time of βp is much
faster than the cavity characteristic evolution time (vis-
ible in Fig.8b). In these conditions, it is sufficient to
use the Lindblad equation (67) with terms (59) and (60)
which depend on βp(t) = βpθ(t) with θ(t) the Heavidside
function.

We compute W (t) numerically by using the function
“mesolve” from the qutip package to solve Eq.(67)56. For
moderate tunnel rates, the cavity evolves towards a co-
herent superposition of two coherent states (see Fig.8a).

FIG. 8: Panel (a): Wigner function W of the cavity for tunnel
rates Γ = 0.005ω0 (left panels) and Γ = 0.01ω0 (right panels)
and different times t after switching on the cavity drive in
εp (tω0 = 1740, 2990, 6130 from top to bottom). The other
parameters are the same as in Fig.7. Panel (b): Minimum
M(t) of the Wigner function W over the field quadratures,
versus t. The black and red points correspond to the Wigner
functions in the left and right panels of (a) respectively.

The nonclassicality of W (t) is revealed by the red ar-
eas where W (t) < 0. At large times, there remains only
two positive spots in the Wigner function, which are ap-

proximately centered on the average values α+
ave

iϕ+
av and

−α+
ave

iϕ+
av determined in section IV E 2. Therefore, these

two solutions represent cavity stable states in stationary
conditions. Accordingly, we have checked that the square
root

√
N of the average number N =

〈
â†â
〉

of photons in
the cavity calculated numerically for t → +∞ matches
α+
av when the tunnel rate Γ is small (see green dots in

Fig.7). For higher tunnel rates this is not the case any-
more because α+

av = 0 whereas W (t) corresponds to a
squeezed vacuum.

Figure 8b represents the time evolution of the min-
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imum negativity M(t) = minα,α∗ [W (t)] of the Wigner
function W (t) over the fields quadratures (α, α∗). When
Γ increases, the minimum of M(t) over time is reached
later, which could be explained by the fact that the
amplitude of the two-photon drive in ρp decreases (not
shown). Negativities in W (t) do not appear anymore if
Γ is too large (Γ & 0.04ω0 for the parameters of Fig.7).
Figure 7 shows with magenta dots the minimum negativ-
ity mint [M(t)] of W (t) over α, α∗ and the time t, as a
function of Γ. This quantity decreases more quickly with
Γ than the amplitude of the semiclassical solution α+

av.
However, it is striking that a genuinely dissipative circuit
such as a double quantum dot circuit is able to induce
non classical cavity states thanks to the two-photon irre-
versible tunneling processes represented by Kloss. Inter-
estingly, for Γ ∼ 0.01ω0, the Wigner function negativity
remains smaller than for Γ ∼ 0.005ω0, but it survives
longer (compare black and red curves in Fig.8). Note
that in Ref.6, a two-photon dissipation term similar to
ρp and a two photon drive term similar to Kloss were
obtained artificially by using an auxiliary cavity and two
microwave tones. Photonic Schrödinger cats were ob-
tained experimentally due to these effects. In our case,
a single drive at 2ω0 and the inclusion of a double dot
in a single cavity are used to obtain these effects. For a
typical cavity frequency ω0 ∼ 2π × 5 GHz, the required
tunnel rates Γ ∼ 0.01ω0 correspond to 0.2 µeV, a value
which can be reached in practice23,58. With the simple
protocol considered in this section, the photonic quan-
tum superposition survives for a duration of the order of
8000/ω0 ' 0.25 µs which is much longer than the time
scale 1/Γ = 100/ω0 ' 3 ns associated to dissipative tun-
neling between the dots and the normal reservoirs.

V. CONCLUSION

In this work, we have developed a quantum nonlinear
description of mesoscopic QED experiments. More pre-
cisely, we have used a quantum path integral approach
to express the effective action of a microwave cavity with
bare frequency ω0, coupled to a generic mesoscopic cir-
cuit, and excited by a microwave drive at frequency 2ω0.
We have developed this action to fourth order in the
cavity/circuit coupling. This development reveals pho-
ton/photon interactions mediated by the mesoscopic cir-
cuit. We have investigated the possibility to establish a
Markovian Lindblad description of the cavity dynamics
from the cavity action. This is always possible to third
order in the light matter coupling. In this limit, the
cavity is subject to a coherent photon pair drive and a
squeezing dissipation mediated by the mesoscopic circuit.
To fourth order in the light/matter coupling, we identify
particular conditions in which the Markovian approxi-
mation still holds. In this case, the mesoscopic circuit
enables Kerr photon/photon interactions and two pho-
ton loss/gain stochastic processes. We have shown an
example of application of our formalism to the case of

a resonator coupled to a double quantum dot with nor-
mal metal contacts. We have studied how nonlinear ef-
fects such as cavity squeezing, and photonic Schrödinger
cat states can occur, with a non-trivial influence of dis-
sipative mesoscopic transport. In particular, quantum
superpositions of photonic states can occur thanks to
two-photon dissipation caused by tunneling processes in-
side the double dot circuit. The cavity squeezing effect
also depends non-trivially on the dissipative tunnel rates
between the dots and normal reservoirs (see Appendix
F). We anticipate that the quantum regime of Meso-
scopic QED conceals many more surprises which our
approach can reveal. Indeed, our method can be ex-
tended straightforwardly to more complex circuit geome-
tries with multiple quantum dots and ferromagnetic or
superconducting reservoirs. The effect of Coulomb in-
teractions inside the quantum dots also represents a rich
field of investigation59. For simplicity, we have studied
Markovian situations. However, our cavity action fully
includes non-Markovian effects and it could be exploited
in the non-Markovian regime by using a more general
technical framework39. Therefore, our work should be
instrumental to develop Mesoscopic QED in the quan-
tum nonlinear regime. Interestingly, the description of
the effective dynamics of microwave cavities coupled to
dissipative Josephson circuits is also an important topic
which lacks of systematic approaches beyond the second
order in the light/matter interaction60,61. Our path in-
tegral approach could be used to tackle this problem.
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Appendix A: Details on the derivation of the cavity
effective action

Here, we give more details on the derivation of Eqs.(28)
- (45). The drive at frequency 2ω0 is not resonant with
the cavity, and will affect the photonic dynamics only
indirectly thanks to the nonlinearity of the mesoscopic
circuit. To emphasize this fact and simplify the calcu-
lation of the cavity effective action, it is convenient to
make a displacement of the cavity fields

[
φcl(t)
φq(t)

]
=

[
ϕcl(t)
ϕq(t)

]
+

[∫
ω

√
2ε∗ac(ω)GA0 (ω)eiωt

0

]
(90)

with the cavity drive εac defined temporally in Eq.(3) and
GA0 the bare cavity green’s function defined in Eq.(37).
In this framework, the action of the system becomes

Z =

∫
d[φ̄, φ]eiS

0
cav(φ̄,φ)

∫
d[ψ̄, ψ]eiSmeso(ϕ̄,ϕ,ψ̄,ψ) (91)
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with S0
cav defined in Eq.(19) and

Smeso(φ̄, φ, ψ̄, ψ) =

∫
t,t′

ψ̄(t)(Ǧ−1(t, t′)− v̌φ̄,φΣ (t, t′))ψ(t′)

(92)

v̌φ̄,φΣ (t, t′) =
(
v̌(φ̄, φ, t) + v̌ac,1(t) + v̌†ac,1(t)

)
δ(t− t′)

(93)

v̌ac,1(t) =
ǧ

2

(
εpGR0 (2ω0)e−i2ω0t + ε∗pGR0 (−2ω0)ei2ω0t

)
(94)

In Eqs.(92)-(94), the ac drive now modifies directly the
potential seen by the electrons of the mesoscopic circuit.
The coefficients in GR0 in Eq. (94) express how the ac
drive is seen by electrons after a transduction by the
cavity. They lead to the occurrence of the factor t0 in
Eq.(35).

To eliminate the electronic degrees of freedom from
Eq.(91), we perform a Gaussian integration of (91) with
respect to the ψ̄ and ψ fields. This Gaussian integration
is possible because, in the absence of Coulomb interac-
tions, the system action is quadratic with respect to the
electronic fields. This gives

Z =

∫
d[φ̄, φ]eiS

0
cav(φ̄,φ)Ξ(φ̄, φ) (95)

with

Ξ(φ̄, φ) = D[1̌− m̌] (96)

and

m̌ = Ǧ ◦ v̌φ̄,φΣ (97)

Above, ◦ denotes a convolution on the time variables and
a matrix product on the mesoscopic orbital degrees of
freedom, and D is a generalized determinant which can
be defined as63

Log[Ξ(φ̄, φ)] (98)

= −
∫
t

Tr
k,d

[
m̌(t, t) +

m̌ ◦ m̌|t,t
2

+
m̌ ◦ m̌ ◦ m̌|t,t

3
+ ...

]
The next step is to express Eq. (98) in terms of dot

Green’s functions. This can generate many terms with a
complex structure, but significant simplifications can be
performed in the limit where the dressed cavity has a suf-
ficient finesse. For brevity we only show the development
of the second order term

C2 = −
∫
t

Tr
k,d

[
m̌ ◦ m̌|t,t /2

]
εp=0

(99)

in Eq.(98), in the absence of the 2ω0 drive (εp = 0). From

the definitions of m̌ and v̌φ̄,φΣ , one has:

C2 = −
∫
t

Tr
k,d

[Ǧ(t, t′)v̌(φ̄, φ, t′)Ǧ(t′, t)v̌(φ̄, φ, t)]/4 (100)

Using the definition (27) of v̌ in terms of fermionic fields
and introducing Fourier transforms, one gets

C2 = −
∫∫
ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφ̄Σ(ω3 − ω1)Ǧ(ω3)ǧφ̄Σ(ω1 − ω3)]/4

−
∫∫
ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφ̄Σ(ω3 − ω1)Ǧ(ω3)ǧφΣ(ω3 − ω1)]/4

−
∫∫
ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφΣ(ω1 − ω3)Ǧ(ω3)ǧφ̄Σ(ω1 − ω3)]/4

−
∫∫
ω1,ω2

Tr
k,d

[Ǧ(ω1)ǧφΣ(ω1 − ω3)Ǧ(ω3)ǧφΣ(ω3 − ω1)]/4

(101)

with

φΣ(ω3 − ω1) = φcl(ω3 − ω1)σ̌0 + φq(ω3 − ω1)σ̌1 (102)

and

φ̄Σ(ω3 − ω1) = φ̄cl(ω3 − ω1)σ̌0 + φ̄q(ω3 − ω1)σ̌1 (103)

Assuming that the dressed cavity has a good quality fac-
tor (Λapp0 = Λ0 + ∆Λ0 � ω0 has to be checked a pos-
teriori), the terms φΣ(ω1 − ω3) and φΣ(ω3 − ω1) have a
weak overlap and therefore the first and fourth line of the
above expression, which contains products φ̄cl(q)φ̄cl[q] or
φcl(q)φcl(q), are negligible. A change of frequency vari-
ables in the remaining terms (which contain contribu-
tions in φ̄cl(q)φcl[q] only) gives

C2 = −
∫∫
ω1,ω

Tr
k,d

[Ǧ(ω1)ǧφ̄Σ(ω)Ǧ(ω + ω1)ǧφΣ(ω)]/4

−
∫∫
ω1,ω

Tr
k,d

[Ǧ(ω1)ǧφΣ(ω)Ǧ(ω1 − ω)ǧφ̄Σ(ω)]/4 (104)

Then, we assume that the dressed cavity linewidth is
much smaller than the mesoscopic resonances linewidth
(Λ0 + ∆Λ0 � Γ has to be checked a posteriori, with Γ
the order of magnitude of the tunnel rates to the meso-
scopic reservoirs). In this case, the terms in Ǧ in the
above integral vary very slowly in the frequency area
ω0 − Λapp0 . ω . ω0 + Λapp0 where φΣ(ω) and φ̄Σ(ω)
contribute significantly to the cavity action, and one can
thus use ω ' ω0 in these terms. This gives

C2 = −
∫∫
ω1,ω

Tr
k,d

[Ǧ(ω)ǧφ̄Σ(ω1)Ǧ(ω0 + ω)ǧφΣ(ω1)]/4

−
∫∫
ω1,ω

Tr
k,d

[Ǧ(ω)ǧφΣ(ω1)Ǧ(ω − ω0)ǧφ̄Σ(ω1)]/4 (105)

Finally we can come back to the time representation for
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the cavity fields

C2 = −
∫∫
ω,t

Tr
k,d

[Ǧ(ω)ǧφ̄Σ(t)Ǧ(ω0 + ω)ǧφΣ(t)]/4

−
∫∫
ω,ω

Tr
k,d

[Ǧ(ω)ǧφΣ(t)Ǧ(ω − ω0)ǧφ̄Σ(t)]/4 (106)

A rearrangement of these terms leads to an action con-
tribution similar to that of Eq.(29), with fields ϕ̄, ϕ
replaced by φ̄,φ. A similar treatment can be per-
formed for higher order terms of Eq.(98) and terms
which depend on εp. For instance, the contribution in
g4 corresponds to 6 terms similar to those of Eq.(106).
We finally obtain, after some algebra and term re-
grouping, a cavity effective Schwinger-Keldysh partition

function Z =
∫
d[φ̄, φ]eiS

eff
cav (φ̄,φ) with Seffcav defined in

Eq.(28). The final step is to come back to an ex-
pression of the cavity action with the fields ϕ̄, ϕ. We
disregard terms of order g4εp, since we assume that
both g4 and εp are small. In this case, one obtains

Z =
∫
d[ϕ̄, ϕ]ei(S

eff
cav (ϕ̄,ϕ)+∆S̃ac(ϕ̄,ϕ)) where ∆S̃ac(ϕ̄, ϕ) is

a drive term similar to the term ∆Sac(ϕ̄, ϕ) of Eq.(20),
but with an amplitude εp which has a renormalization
in g2εp. However, since this ac drive is non resonant

with the cavity, one can disregard ∆S̃ac. Therefore, one
can use Z '

∫
d[ϕ̄, ϕ] exp[iSeffcav (ϕ̄, ϕ)]. In particular, one

gets the expression

A =i

Ncl,cl,cl,cl Ncl,cl,cl,q Ncl,cl,q,qNcl,q,cl,cl Ncl,q,cl,q Ncl,q,q,q
Nq,q,cl,cl Nq,q,cl,q Nq,q,q,q

 (107)

for the matrix which occurs in the expression (38), with
coefficients Nf,f ′,l,l′ defined in Eq.(45). Using the cyclic
property of the trace in Eq.(45) and the properties

G̃K(ω) = −G̃K(ω)† and G̃a(ω) = G̃r(ω)†, one can check
that there exists relations between the different compo-
nents of A in Eq.(107) so that one finally gets expression
(39).

Appendix B: Semiclassical description of Mesoscopic
QED

B1. Direct semiclassical description of Mesoscopic
QED

It is useful to reconsider the problem of Mesoscopic
QED with a direct semiclassical approach (without the
path integral formulation) in order to gain more physical
insight into the new coefficients χ4 and Ucl which appear
in Eqs.(32) and (38). Equation (1) gives the photonic
equation of motion in the Heisenberg picture:

d

dt
â(t) = −iω0â(t)− i

~
∑
d

gdn̂d(t)−
Λ0

2
â(t)− iεac(t)

(108)

In a semiclassical picture, the operator â(t) in the above
equation can be treated as a classical quantity a(t) =
â(t) = 〈â(t)〉. In this case, the average electron num-

ber operator 〈n̂d(t)〉 =
〈
ĉ†d(t)ĉd(t)

〉
in orbital d can be

calculated as the response to the “classical” excitations
gd′(a

†(t) + a(t)) , with d′ ∈ [1, N ], which we will write in
a matrix form as

Ẽac(t) = g̃(a†(t) + a(t)) (109)

At this stage, although a(t) is expected to have a domi-
nant contribution in e−iω0t, it is essential to take into ac-
count weak components in e±i2ω0t to describe the effect
of the drive in βp on 〈n̂d(t)〉. It is sufficient to estimate
these components from Eq.(108) treated to order 0 in g̃,
because this is enough to obtain a βpg̃

3 contribution to
the photonic field, as we will see below. Hence, we use

Ẽac(t) = g̃
(
αe−iω0t + α∗eiω0t + Re[t0εpe

−i2ω0t/2]
)

(110)
with t0 defined by Eq.(36). The amplitude α is not spec-
ified since it must be determined self-consistently from
Eq.(108) and the response of the average dot charges

to Ẽac(t). From the Keldysh description of mesoscopic
transport52, this response is given by∑

d

gd 〈n̂d(t)〉 = −iT rd[g̃G̃<(t, t)] (111)

where the lesser Green’s function of the dots G̃< in the
presence of Ẽac(t) can be expressed as

G̃<(t, t) =
∫∫∫ dω

2π
dt1dt2e

−iω(t1−t2)G̃r(t, t1)Σ̃<(ω)G̃a(t2, t)

(112)

Above, Σ̃<(ω) is the lesser self energy of the dots illus-
trated in section IV B for the double dot case. The meso-
scopic retarded and advanced Green’s functions G̃r(a) in

the presence of Ẽac(t) can be calculated in terms of the

unperturbed mesoscopic Green’s functions G̃r(a) defined
in section III A by using the Dyson equation

G̃J(t, t′) = G̃J(t, t′) +
∫ dt1

~
G̃J(t, t1)Ẽac(t1)G̃J(t1, t

′)

(113)
with J ∈ r(a).

The combination of Eqs.(111), (112) and (113) gives,
by keeping only resonant contributions in e−iω0t,

∑
d

gd 〈n̂d〉 '
(
αχ2 + 2α |α|2 χ4 + iα∗Ucl

)
e−iω0t (114)

Tedious algebra is necessary to identify the coefficients
which appear in Eq.(114) with the correlation functions
Ucl and χ4 defined in the main text, especially in the
multi-orbital case N > 1. Equation (114) shows that χ2

is the linear response function of the dots charge to the
excitation in αe−iω0t, and χ4 is the second order response
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function to the same excitation, whereas Ucl appears as a
transduction coefficient for the field component in α∗eiω0t

into a resonant term in e−iω0t thanks to the energy pro-
vided by the drive in εp. One can finally inject Eq.(114)
into the statistical average of Eq.(108) to obtain

0 = α∗Ucl −
(
iχ2 +

Λ0

2
− 2i |α|2 χ4

)
α (115)

For this last step, we have used the resonant approxi-
mation εac(t) ' εe−iω0t in Eq.(108). One can see along
this calculation that εp plays a crucial role in interme-
diary steps of the calculation for the description of two
photon processes, but its direct resonant contribution to
(115) can be disregarded. A similar fact happens with
the path integral approach where εp produces indirectly

the S
(3)
g (t) term whereas its direct contribution ∆Sac(t)

can be disregarded from the effective action Seffcav (t) in
the resonant approximation. Note that Eq.(115) is in
full agreement with the result given by a direct calcu-
lation of the semiclassical cavity steady states with the
path integral description (see Appendix B2).

B2. Semiclassical photonic amplitudes given by the
path integral description

The possible semiclassical photonic amplitudes of the
cavity in stationary conditions can also be obtained
by looking for the saddle points of the cavity effective
action39. Since the action (28) vanishes for ϕcl = 0,
ϕ̄cl = 0, a semiclassical solution for the cavity field can
be found at ϕq = 0, ϕ̄q = 0 and values of ϕcl and ϕ̄cl
such that ∂(S)/∂ϕ̄q(t)|ϕq=0,ϕ̄q=0 = 0. This gives

−
√

2εac(t) = (i∂t − ω0 +
iΛ0

2
)ϕcl − χ2ϕcl (116)

− ie−2iω0tUclϕ̄cl − χ4ϕ̄clϕclϕcl

One can disregarded εac(t) from the left member of
Eq. (116) because it is not directly resonant with the
cavity. Hence, one can expect a semiclassical solution
ϕsc =

√
2αsce

i(ϕsc−ω0t) such that(
Ucle

−2iϕsc − Λ0

2
− iχ2 − 2iχ4 |αsc|2

)
αsc = 0 (117)

with αsc the semiclassical value of â. Equation (117) is in
full agreement with the semiclassical Eq. (115) if α = αsc
is used. This equation is also similar to the equation (83)
on the average photons amplitude αav obtained from the
Lindblad description of the cavity dynamics, up to the
term in ∆Λ0,4 which is not present in Eq.(117). This
discrepancy is due to the fact that the equation on αsc
is obtained by disregarding quantum fluctuations of the
cavity occupation.

FIG. 9: Panels (a), (b) and (c): Cavity field quadratures
∆X± versus ∆ωRL, Γ and βp respectively. In panel (a), we
use tLR = 0.3ω0, Γ = 0.1ω0 and βp = 7.5. In panel (b) we use
tLR = 0.3ω0 (cyan lines) or tLR = 0.025ω0 (magenta lines),
∆ωRL = R(2ω0) and βp = 11. In panel (c) we use tLR = 0.3,
Γ = 0.1ω0 and ∆ωRL = R(2ω0) (red lines) or ∆ωRL = R(ω0)
(blue lines). The other parameters are the same as in Fig. 3
with ωav = 0 and gL = 0.01ω0. The full lines correspond to
the result given by the full expressions (81) and (82) of A and
B whereas the dotted lines omit the contribution of γp (or
equivalently Uqq). For reference, the second order variance
∆X2 for an empty cavity (corresponding to the case for gL =
0) is also shown as a dashed yellow line. The vertical dashed
gray lines in panel (a) indicate the resonances ∆ωRL = R(ω0)
and ∆ωRL = R(2ω0). The blue and red squares indicate
working points which are common to panels (a), (b) and (c).
In panel (c), the plots are restricted to the range where γloss >
0 and γgain > 0, which is narrower in the case ∆ωRL = R(ω0)
(blue curves). Panel d: Squeezed cavity Wigner function for
the working point corresponding to the empty red circles in
panel (c). The major axis of the Wigner function is shown as
a blue line.

Appendix C:Action associated to a master equation
description

Following Ref.62, the action corresponding to the mas-
ter equation with the form (46) can be expressed as

S =

∫
t

(ϕ̄+(t)i∂tϕ+(t)− ϕ̄−(t)i∂tϕ−(t)− iL(t) (118)
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with ϕ± = 1√
2
(ϕcl ± ϕq), ϕ̄± = 1√

2
(ϕ̄cl ± ϕ̄q) and

−iL(t) = −Heff
cav [ϕ̄+(t), ϕ+(t)] +Heff

cav [ϕ̄−(t), ϕ−(t)]

− i
∑
j

γjL̂j [ϕ̄+, ϕ+]L̂†j [ϕ̄−, ϕ−]

+
i

2

∑
j,s∈{+,−}

γjL̂
†
j [ϕ̄s, ϕs]L̂j [ϕ̄s, ϕs] (119)

This leads to Eqs.(49), (61), and (62) of the main text.
Note that this result is valid even when the dissipative
rates γj and the Hamiltonian Heff

cav are time-dependent

Appendix D: Link between the direct density matrix
approach and the path integral approach to second

order in ǧ

To show that the Lindblad Eqs.(12) and (67) obtained
with the direct density matrix approach and the path
integral approach, respectively, agree to second order in
ǧ, one must establish the relation between the parameters
χA, χB and χ2, λ2 which occur in these Eqs. Note that
χ2 and λ2 have a frequency dependence which is omitted
in the main text where we use χ2 = χ2(ω0), and λ2 =
λ2(ω0). For our present purpose, it is convenient to use
the inverse Fourier transform of these quantities, defined

generally as f(t) =
∫ +∞
−∞

dω0

2π f(ω0)e−iω0t. One can use
the general relation∫ +∞

−∞

dω

2π
a(ω+ω0)b(ω) =

∫ +∞

−∞
dt a(t)b(−t)eiω0t (120)

where a and b are two generic functions, to reexpress
Eqs.(30) and (31) as

χ2(t) = − i
2

Tr
d

[
G̃K(t)g̃G̃a(−t)g̃ + G̃K(−t)g̃G̃r(t)g̃

]
(121)

λ2(t) = − i
2

Tr
d

[
G̃K(−t)g̃G̃K(t)g̃ (122)

+ G̃a(−t)g̃G̃r(t)g̃ + G̃r(−t)g̃G̃a(t)g̃
]

At this stage, it is convenient to define the lesser and
greater fermionic Green’s functions

Gd,d
′

< (t) = i
〈
ĉ†d′(0)ĉd(t)

〉
(123)

Gd,d
′

> (t) = −i
〈
ĉd(t)ĉ

†
d′(0)

〉
(124)

to reexpress definitions (24)-(26) as:

Gd,d
′

r (t) = θ(t)
(
Gd,d

′

> (t)−Gd,d
′

< (t)
)

(125)

Gd,d
′

a (t) = θ(−t)
(
Gd,d

′

< (t)−Gd,d
′

> (t)
)

(126)

and

Gd,d
′

K (t) = Gd,d
′

< (t) +Gd,d
′

> (t) (127)

Then, using Eqs.(125)-(127), one can rewrite Eqs.(121)
and (122) as

χ2(t) = iθ(t)Tr
d

[
G̃<(t)g̃G̃>(−t)g̃ − G̃>(t)g̃G̃<(−t)g̃

]
(128)

λ2(t) = −iTr
d

[
G̃<(−t)g̃G̃>(t)g̃ + G̃>(−t)g̃G̃<(t)g̃

]
(129)

Since we consider a non-interacting case, one can use the
Wick theorem to reexpress the above equations in terms
of charge correlators47. Indeed, using the operator N̂(t)
of Eq. (6), one finds〈

N̂(t)N̂(0)
〉

=
〈
N̂
〉2

+ Tr
d

[
G̃<(−t)g̃G̃>(t)g̃

]
(130)

〈
N̂(0)N̂(t)

〉
=
〈
N̂
〉2

+ Tr
d

[
G̃<(t)g̃G̃>(−t)g̃

]
(131)

This leads to

χ2(t) = iθ(t)
(〈
N̂(0)N̂(t)

〉
−
〈
N̂(t)N̂(0)

〉)
(132)

λ2(t) = −i
(〈

N̂(0)N̂(t)
〉

+
〈
N̂(t)N̂(0)

〉
− 2

〈
N̂
〉2
)

(133)
A comparison of these equations with the definitions (14)
and (15) of χA(t) and χB(t) gives, in the frequency do-
main

χ2(ω0) = χB(ω0)− χA(ω0) (134)

λ2(ω0) = 2i

(
Im[χA(ω0) + χB(ω0)] +

〈
N̂
〉2

δ(ω0)

)
(135)

This proves the relations (70) and (71) of the main text
and the agreement between the Lindblad Eqs.(12) and
(67) at second order in ǧ/ω0.

Appendix E: Analytical calculation of the Wigner
function to third order in ǧ/ω0

The definition (77) of the Wigner function involves the

correlation function χ(t, β, β∗) =
〈
eβa

†
I−β

∗aI
〉
t
. From

the expression of the effective Hamiltonian Heff
cav and the

jump operators L̂j , one can check that χ follows39

∂

∂t
χ = −i∆ω0 (−β∂β + β∗∂β∗)χ− γ+

ββ∗

2
χ

− γ−
2

(β∗∂β∗ + β∂β)χ− 2ρpβ
∗∂βχ− 2ρ∗pβ∂β∗χ

− β2

2
γpe
−iϕpχ− β∗2

2
γpe

iϕpχ (136)
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FIG. 10: Cavity field quadratures ∆X± versus ωav = (ωR +
ωL)/2 (panel (a)) and versus the bias voltage Vb (panel (b))
for ∆ωRL = 2ω0, tLR = 0.1ω0, gL = 0.01ω0 and βp = 200.
The other parameters are the same as in Fig.3. Panel (a)
considers different cavity damping rates Λ0/(10−5ω0) = 2.5,
3.5 and 5 with red, blue and black lines. Panel (b) shows
results for average dot orbital energies ωav/ω0 = −2.1 (cyan
lines) and ωav/ω0 = −1.2 (green lines). The circles indicate
working points common to panels (a) and (b). For reference,
the second order variance ∆X2 =

√
1 + 2nB/2 for a decoupled

cavity (gL = 0) is also shown as a dashed yellow line. It is
independent of the value of Λ0.

For compactness we note ∂
∂β = ∂β and ∂

∂β∗ = ∂β∗ . The

above equation is a first order differential equation which
is more convenient to solve than the second order differ-
ential equation (77). It is then straightforward to Fourier
transform χ to obtain W (t).

Appendix F: Parametric control of the squeezing
effect

This Appendix discusses how the photonic squeezing
effect of Section IV.D depends on the double dot pa-
rameters. Figure 9 shows the cavity field quadratures
∆X± versus the orbital detuning ∆ωRL = ωR − ωL
(panel (a)), versus Γ (panel (b)) and versus the cavity
drive amplitude βp (panel (c)) for a case where the sin-
gle and two photon resonances at ∆ωRL = Y (ω0) and
∆ωRL = Y (2ω0) are allowed. The results given by the
full expressions (81) and (82) of A and B are shown with
full lines. For reference, the variance

∆X2 =
1

2

√
Λ0(1 + 2nB)− Im[λ2]

Λ0 − 2 Im[χ2]
(137)

of the cavity field to second order in gL is also shown as a
yellow line. One gets a squeezing effect (∆X− < ∆X2 <
∆X+) which is maximal at ∆ωRL = Y (2ω0) (panel (a)).
As visible in panel (b), for tLR = 0.3 (cyan full line),
squeezing decreases with Γ. One could expect that higher
values of Γ are always detrimental to squeezing. However,
for a small value of tLR (magenta full lines), the squeezing

effect finds a local maximum for a value of Γ which can
be quite significant (Γ ∼ 0.9ω0 in panel (b)).

To determine the role of the parameter Uq (or γp), we
show with dotted lines in Fig. 9a, b and c, the cavity
field quadratures given by Eqs. (81) and (82) with γp
omitted (γp = 0). For the moderate tunnel rate Γ used
in panel (a), the full and dotted lines coincide around
∆ωRL = Y (2ω0) but not near the single photon reso-
nance ∆ωRL = Y (ω0). Surprisingly, for ∆ωRL = Y (ω0),
the dissipative term in Uq is responsible for an increase
of the squeezing effect, in spite of its dissipative nature.
Such an effect is allowed by Eq.(82). To see an effect of Uq
on the squeezing at the working point ∆ωRL = Y (2ω0),
it is necessary to increase the value of Γ (see panel (b)).
In this case, Uq causes a decrease of the squeezing ampli-
tude. To summarize, the dissipative term in Uq can ei-
ther increase or decrease the squeezing effect, depending
on the regime of parameters. Nevertheless, to maximize
the squeezing effect, it is advantageous to use the regime
∆ωRL = Y (2ω0) and Γ small, where the effect of Uq can
be disregarded (empty red squares in Fig.9b). Therefore
we will consider this regime in the rest of the present
Appendix and Fig.10.

The use of a double quantum dot circuit as a nonlin-
ear element for circuit QED can be interesting because
it offers a strong tunability of the squeezing effect, as
already seen in Fig.9. Figure 10a shows that the ampli-
tude of the squeezing effect is also strongly dependent
on the average level position ωav = (ωL + ωR)/2. Be-
sides, the squeezing effect can be controlled by using a
nonzero bias voltage Vb (see Fig.10b). This is consistent
with the fact mentioned earlier that using a nonzero Vb
modifies the orbital energy range where the drive terms
Ucl shows strong resonances (Fig.3a and c). Note that,
so far, we have used a relatively high cavity damping
rate Λ0 which limits the squeezing effect. Panels (a) and
(b) of Fig. 10 show that for a given set of double dot
parameters, the squeezing effect increases when Λ0 de-
creases, as expected. Finally, Fig. 9c shows an example
of cavity Wigner function corresponding to the red empty
circles in Fig.9. Using the qutip package mesolve56, we
have checked that this Wigner function is in quantita-
tive agreement with a direct numerical treatment of Eq.
(46). We have also checked that fourth order corrections
in gL are negligible for the parameters considered in the
present section. Therefore, a treatment of the master
equation (46) to third order in gL is fully justified for the
parameters used in section IV D.

Interestingly, it has also been suggested to obtain cav-
ity squeezing by using a single quantum dot with an ac
excitation with amplitude ε′p applied directly to the dot

gate57. However, on the experimental level, such a strat-
egy is more costly since it requires to fabricate a direct
ac gate for the quantum dot. Note that Ref.57 presents
the cavity effective action to second order in gL only.
A coherent two-photon drive term in ε′pg

2
L is taken into

account but the terms in χ2, λ2 and the expected contri-
bution in ε′pg

2
L to Uq are disregarded. Alternatively, two-
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photon processes or photonic squeezing have been found
for dc voltage-biased Josephson junctions or tunnel junc-
tions, which have no internal degrees of freedom64–68. In

our case, the dc voltage-bias is not necessary due to the
presence of the dot orbital degree of freedom.
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